Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T03:02:35.643Z Has data issue: false hasContentIssue false

Effects of light, temperature and population variability on the germination of seven Spanish pines

Published online by Cambridge University Press:  22 February 2007

A. Escudero*
Affiliation:
Departamento de Ciencia y Tecnología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencia y Estudios Técnicos, Universidad Rey Juan Carlos, C/. Tulipán s/n, Móstoles, Madrid E-28933, Spain
F. Pérez-García
Affiliation:
Departamento de Biología Vegetal, Escuela Universitaria Ingeniería Técnica Agrícola, Universidad Politécnica de Madrid, Madrid E-28040, Spain
A. L. Luzuriaga
Affiliation:
Departamento de Ciencia y Tecnología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencia y Estudios Técnicos, Universidad Rey Juan Carlos, C/. Tulipán s/n, Móstoles, Madrid E-28933, Spain
*
*Correspondence Fax: 34-91-6647490 Email: a.escudero@escet.urjc.es

Abstract

Most Pinus species are obligate seeders. Thus, knowledge of germination characteristics can help in the understanding, prediction and manipulation of the regeneration and dynamics of pine forests. Seven pine species with contrasting habitat preferences and different genetic pairwise distances are present in the Iberian Peninsula and the Canary Islands: P. halepensis, P. nigra, P. pinaster, P. pinea, P. sylvestris, P. uncinata and P. canariensis. These seven pine species comprise an exceptional experimental set to test some questions related to germination traits, such as: (1) What are the effects of light and temperature on germination, taking into account interpopulation variability? (2) Is there any association of germination traits with habitat (montane versus lowland) preferences? and (3) What is the relationship between germination traits and the genetic distance between pine species? P. nigra, P. sylvestris and P. uncinata seeds showed faster germination rates. Seeds of P. nigra and P. sylvestris reached high total germination percentages in every temperature and light treatment, suggesting an opportunistic germination strategy. Unlike montane pines, lowland pines did show significant effects of temperature on germination response: final germination was higher between 15°C and 20°C than at warmer and alternating temperatures. Relatively low temperatures associated with the winter rainy season would favour germination of most of these species. Nested models showed that population variability was the main source of variation in germination response. Thus, there is no phylogenetic control of the germination response and, surprisingly, germination traits were not related to habitat preferences. As a consequence, we believe that studies of the germination characteristics of a pine species should consider different populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral Franco, J. (1986) Pinaceae. in Castroviejo, S.; Laínz, M.; López González, G; Montserrat, P.; Múñoz Garmendía, F.; Paiva, J.; Villar, L. (Eds) Flora Iberica I: Plantas vasculares de la Península Ibérica e Islas Baleares (Lycopodiaceae-Papaveraceae). Madrid, CSIC.Google Scholar
Andersson, L. and Milberg, P. (1998) Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8, 2938.CrossRefGoogle Scholar
Barbero, M. and Quézel, P. (1989) Structures, architectures forestiéres á sclérophylles et prévention des incendies. Bulletin Ecologiè 20, 714.Google Scholar
Barbero, M., Bonin, G., Loisel, R., Miglioretti, F. and Quézel, P. (1987) Incidence of exogenous factors on the regeneration of Pinus halepensis after fire. Influence of fire on the stability of Mediterranean forest ecosystems. Ecologia Mediterranea 13, 5156.Google Scholar
Barbero, M., Bonin, G., Loisel, R. and Quézel, P. (1990) Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 87, 151173.Google Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Bell, D.T., Plummer, J.A. and Taylor, S.K. (1993) Seed germination ecology in south-western and western Australia. Botanical Reviews 59, 2473.Google Scholar
Borghetti, M., Verdramin, G.G., Giannini, R. and Schettino, A. (1989) Effects of stratification, temperature and light on germination of Pinus leucodermis. Acta Ecologica-Oecologia Plantarum 10, 4556.Google Scholar
Bramlett, D.L., Dell, T.R. and Pepper, W.D. (1983) Genetic and maternal influences on Virginia pine seed germination. Silvae Genetica 32, 14.Google Scholar
Calamassi, R. (1982) Effetti della luce e della temperatura sulla germinazione dei semi in provenienze di Pinus halepensis Mill. e Pinus brutia Ten. Italia Forestale e Montana 37, 174187.Google Scholar
Calamassi, R., Falusi, M. and Tocci, A. (1980) Variazione geografica e resistenza a stress idrici in semi di Pinus halepensis Mill., Pinus brutia Ten. e Pinus eldarica Medw. Annali dell'Istituto Sperimentale per la Selvicoltura (Arezzo) 11, 193230.Google Scholar
Calamassi, R., Falusi, M. and Tocci, A. (1984) Effets de la temperature de germination et de la stratification sur la germination des semences de Pinus halepensis Mill. Silvae Genetica 33, 133139.Google Scholar
El-Kassaby, Y.A., Edwards, D.G.W. and Taylor, D.W. (1992) Genetic control of germination parameters in Douglas-fir and its importance for domestication. Silvae Genetica 41, 4854.Google Scholar
Escudero, A., Barrero, S. and Pita, J.M. (1997) Effects of high temperatures and ash on seed germination of two Iberian pines (Pinus nigra ssp. salzmanni, P. sylvestris var. iberica). Annales des Sciences Forestieres 54, 553562.CrossRefGoogle Scholar
Escudero, A., Sanz, M.V., Pita, J.M. and Pérez-García, F. (1999) Probability of germination after heat treatment of native Spanish pines. Annals of Forest Science 56, 511520.CrossRefGoogle Scholar
Escudero, A., Núñez, Y. and Pérez-García, F. (2000) Is fire a selective force of seed size in pine species? Acta Oecologica 21, 245256.CrossRefGoogle Scholar
Evenari, M. (1952) The germination of lettuce seeds. I. Light, temperature and coumarin as germination factors. Palestine Journal of Botany 5, 138160.Google Scholar
Fenner, M. (1985) Seed ecology. London, Chapman & Hall.CrossRefGoogle Scholar
Giannini, R. and Bellari, C. (1995) Heritability estimate of seed germination parameters in Pinus leucodermis Antoine. Seed Science and Technology 23, 385392.Google Scholar
González-Andrés, F., Pita, J.M. and Ortiz, J.M. (1999) Identification of Iberian and Canarian species of the genus Pinus with four isoenzyme systems. Biochemical Systematics and Ecology 27, 235242.Google Scholar
Gutterman, Y. (1992) Maternal effects on seeds during development. pp.2759in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities. Wallingford, CAB International.Google Scholar
Gutterman, Y. (1994) Strategies of seed dispersal and germination in plants inhabiting deserts. Botanical Review 60, 373425.Google Scholar
Hendrix, S.D. (1984) Variation in seed weight and its effects on germination in Pastinaca sativa L. (Umbelliferae). American Journal of Botany 71, 795802.CrossRefGoogle Scholar
International Seed Testing Association (1985) International rules for seed testing: rules and annexes. Seed Science and Technology 13, 299520.Google Scholar
Keeley, J.E. and Zedler, P.H. (1998) Evolution of life histories in Pinus. pp.219249in Richardson, D.M. (Ed.) Ecology and biogeography of Pinus. Cambridge, Cambridge University Press.Google Scholar
Kigel, J. (1995) Seed germination in arid and semiarid regions. pp.645699in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Krugman, S.L. and Jenkinson, J.L. (1974) Pinus L. Pine. pp.598638in Schopmeyer, C.S. (Ed.) Seeds of woody plants in the United States. Forest Service Agriculture Handbook No. 450. Washington, USDA.Google Scholar
Li, X.J., Burton, P.J. and Leadem, C.L. (1994) Interactive effects of light and stratification on the germination of some British Columbia conifers. Canadian Journal of Botany 72, 16351646.Google Scholar
Magini, E. (1995) Sulle condizioni di germinazione del pino d'Aleppo e del pino domestico. Italia Forestale e Montana 40, 106124.Google Scholar
Neuffer, B. and Hurka, H. (1988) Germination behaviour in populations of Capsella bursa-pastoris (Cruciferae). Plant Systematics and Evolution 161, 3547.Google Scholar
Nyman, B. (1961) Effect of red and far-red irradiation on the germination process in seeds of Pinus sylvestris L. Nature 191, 12191220.Google Scholar
Orlandini, M. and Bulard, C. (1972) Photosensibilité des graines de Pinus banksiana Lamb. Biologia Plantarum 14, 260268.CrossRefGoogle Scholar
Orlandini, M. and Bulard, C. (1975) Principales caractéristiques de la germination des graines photosensibles de pins: comparison avec d'autres matériels. Travaux scientifiques du Parc National de la Vanoise 6, 95114.Google Scholar
Orlandini, M. and Malcoste, R. (1972) Étude du phytochrome des graines de Pinus nigra Arn par spectrophotometric bichromatique in vivo. Planta 105, 310316.Google Scholar
Pedhazur, E.J. (1982) Multiple regression in behavioral research (2nd edition). New York, Holt, Rinehart and Winston.Google Scholar
Pérez-García, F. (1997) Germination of Cistus ladanifer seeds in relation to parent material. Plant Ecology 133, 5762.Google Scholar
Pérez-García, F., Iriondo, J.M., González-Benito, M.E., Carnes, L.F., Tapia, J., Prieto, C., Plaza, R. and Pérez, C. (1995) Germination studies in endemic plant species of the Iberian Peninsula. Israel Journal of Plant Sciences 43, 239247.CrossRefGoogle Scholar
Pons, T.L. (1992) Seeds responses to light. pp.259284in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities. Wallingford, CAB International.Google Scholar
Pratt, D.W., Black, R.A. and Zamora, B.A. (1984) Buried viable seed in a ponderosa pine community. Canadian Journal of Botany 62, 4452.CrossRefGoogle Scholar
Reyes, O. and Casal, M. (1995) Germination behaviour of three species of the genus Pinus in relation to high temperatures suffered during forest fires. Annales des Sciences Forestières 52, 385392.CrossRefGoogle Scholar
Rivas-Martínez, S. (1987) Memoria del Mapa de Series de Vegetación de España. Madrid, MAPA.Google Scholar
Skordilis, A. and Thanos, C.A. (1995) Seed stratification and germination strategy in the Mediterranean pines Pinus brutia and Pinus halepensis. Seed Science Research 5, 151160.Google Scholar
Skordilis, A. and Thanos, C.A. (1997) Comparative ecophysiology of seed germination strategies in the seven pine species naturally growing in Greece. pp.623632in Ellis, R.H.; Black, M.; Murdoch, A.J.; Hong, T.D. (Eds) Basic and applied aspects of seed biology. Dordrecht, Kluwer Academic Publishers.Google Scholar
Spanos, I.A., Daskalakou, E. and Thanos, C.A. (2000) Postfire, natural regeneration of Pinus brutia forests in Thasos island, Greece. Acta Oecologica 21, 1320.CrossRefGoogle Scholar
Thanos, C.A. and Skordilis, A. (1987) The effects of light, temperature and osmotic stress on the germination of Pinus halepensis and Pinus brutia seeds. Seed Science and Technology 15, 163174.Google Scholar
Thanos, C.A., Marcou, S., Christodoulakis, D. and Yannitsaros, A. (1989) Early post-fire regeneration in Pinus brutia forest ecosystems of Samos island (Greece). Acta Oecologica 10, 7994.Google Scholar
Thanos, C.A., Georghiou, K., Kadis, C. and Pantazi, C. (1992) Cistaceae: a plant family with hard seeds. Israel Journal of Botany 41, 251263.Google Scholar
Thanos, C.A., Daskalakou, E.N. and Nikolaidou, S. (1996) Early post-fire regeneration of a Pinus halepensis forest on Mount Párnis, Greece. Journal of Vegetation Science 7, 273280.CrossRefGoogle Scholar
Thompson, K. and Grime, J.P. (1983) A comparative study of germination responses to diurnally fluctuating temperatures. Journal of Applied Ecology 20, 141156.Google Scholar
Toole, V.K. (1973) Effects of light, temperature and their interactions on the germination of seeds. Seed Science and Technology 1, 339396.Google Scholar
Toole, V.K., Toole, E.H., Hendricks, S.B., Borthwick, H.A. and Snow, A.G. (1961) Responses of seeds of Pinus virginiana to light. Plant Physiology 36, 285290.Google Scholar
Toole, V.K., Toole, E.H. and Borthwick, H.A. (1962) Responses of seeds of Pinus taeda and Pinus strobus to light. Plant Physiology 37, 228233.Google Scholar
Trabaud, L. (1995) Modalités de germination des cistes et des pins méditerranéens et colonisation des sites perturbés. Revue Ecologie (Terre Vie) 50, 314.CrossRefGoogle Scholar
Trabaud, L. and Campant, C. (1991) Difficulté de recolonisation naturelle du pin de Salzmann Pinus nigra Arn. ssp. salzmannii (Dunal ) Franco après incendie. Biological Conservation 58, 329343.Google Scholar
Trabaud, L. and Oustric, J. (1989) Influence du feu sur la germination des semences de quatre spéces ligneuses méditeranéennes à reproduction sexuée obligatoire. Seed Science and Technology 17, 589599.Google Scholar
Trask, M.M. and Pyke, D.A. (1998) Variability in seed dormancy of three Pacific Northwestern grasses. Seed Science and Technology 26, 179191.Google Scholar
Wulff, R.D. (1995) Environmental maternal effects on seed quality and germination. pp.491506in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Young, J.A. and Young, C.G. (1992) Seeds of woody plants in North America. Portland, Oregon, Dioscorides Press.Google Scholar
Youngberg, C.T. (1952) Effects of soil fertility on the physical and chemical properties of tree seed. Journal of Forestry 50, 850852.Google Scholar