Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T17:35:01.245Z Has data issue: false hasContentIssue false

Facial Affect Recognition in Myasthenia Gravis

Published online by Cambridge University Press:  10 July 2013

Esther Lázaro*
Affiliation:
Universidad de Deusto (Spain)
Imanol Amayra
Affiliation:
Universidad de Deusto (Spain)
Juan Francisco López-Paz
Affiliation:
Universidad de Deusto (Spain)
Amaia Jometón
Affiliation:
Universidad de Deusto (Spain)
Natalia Martín
Affiliation:
Universidad de Valladolid (Spain)
Patricia Caballero
Affiliation:
Universidad de Deusto (Spain)
Luís De Nicolás
Affiliation:
Universidad de Deusto (Spain)
Holger Hoffmann
Affiliation:
University Clinic for Psychosomatic Medicine and Psychotherapy (Germany)
Henrik Kessler
Affiliation:
University Clinic for Psychosomatic Medicine and Psychotherapy (Germany)
Begoña Ruiz
Affiliation:
Centro de Referencia Estatal de Enfermedades Raras (Spain)
Oscar Martínez
Affiliation:
Universidad de Deusto (Spain)
*
*Corresponding author: Esther Lázaro, Universidad de Deusto (Spain), E-mail: estherlazaro@deusto.es

Abstract

The assessment of facial expression is an important aspect of a clinical neurological examination, both as an indicator of a mood disorder and as a sign of neurological damage. To date, although studies have been conducted on certain psychosocial aspects of myasthenia, such as quality of life and anxiety, and on neuropsychological aspects such as memory, no studies have directly assessed facial emotion recognition accuracy. The aim of this study was to assess the facial emotion recognition accuracy (fear, surprise, sadness, happiness, anger, and disgust), empathy, and reaction time of patients with myasthenia. Thirty-five patients with myasthenia and 36 healthy controls were tested for their ability to differentiate emotional facial expressions. Participants were matched with respect to age, gender, and education level. Their ability to differentiate emotional facial expressions was evaluated using the computer-based program Feel Test. The data showed that myasthenic patients scored significantly lower (p < 0.05) than healthy controls in the total Feel score, fear, surprise, and higher reaction time. The findings suggest that the ability to recognize facial affect may be reduced in individuals with myasthenia.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three dimensional lesion mapping. Journal of Neuroscience, 20, 16831690.CrossRefGoogle ScholarPubMed
Adolphs, R., Gosselin, F., Buchannan, T., Tranel, D., Schyns, P., & Damasio, A. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 6872. http://dx.doi.org/10.1038/nature03086 Google Scholar
Aviezer, H., Bentin, S., Hassin, R., Meshino, W., Kennedy, J., Grewal, S., … & Moskovitch, M. (2009). Not on the face alone: Perception of contextualized face expressions in Huntington´s disease. Brain, 132, 16331644. http://dx.doi.org/10.1093/brain/awp067 Google Scholar
Bartel, P., & Lotz, B. (1995). Neuropsychological test performance and affect in myasthenia gravis. Acta Neurologica Scandinavica, 91, 266270. http://dx.doi.org/10.1111/j.1600-0404.1995.tb07002.x Google Scholar
Clader, J., & Wang, Y. (2005). Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Current Pharmaceutical Design, 11, 33533361. http://dx.doi.org/10.2174/138161205774370762 Google Scholar
Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. Journal of abnormal and social psychology, 65, 145153. http://dx.doi.org/10.1037/h0045186 Google Scholar
Davis, M. (1908). A multidimensional approach to individuals differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85103.Google Scholar
Denham, S. (1998). Emotional development in young children. New York, NY: Guilford Press.Google Scholar
Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48, 384392. http://dx.doi.org/10.1037//0003-066X.48.4.384 CrossRefGoogle ScholarPubMed
Graef, S., Schönknecht, P., Sabri, O., & Hegerl, U. (2011). Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: An overview of preclinical and clinical findings. Psychopharmacology, 215, 205229. http://dx.doi.org/10.1007/s00213-010-2153-8 CrossRefGoogle ScholarPubMed
Grey, J., Young, A., Barker, W., Curtis, A., & Gibson, D. (1997). Impaired recognition of disgust in Huntington´s disease gene carriers. Brain, 120, 20292038. http://dx.doi.org/10.1093/brain/120.11.2029 Google Scholar
Halberstadt, J., Winkielman, P., Niedenthal, P., & Dalle, N. (2009). Emotional conception. How embodied concepts guide perception and facial action. Psychological Science, 20, 12541261. http://dx.doi.org/10.1111/j.1467-9280.2009.02432.x Google Scholar
Hinton, V., Fee, R., De Vivo, D., & Goldstein, E. (2007). Poor facial affect recognition among boys with Duchenne muscular dystrophy. Journal of Autism Developmental Disorders, 37, 19251933. http://dx.doi.org/10.1007/s10803-006-0325-5 Google Scholar
Hoffmann, H. (2010). Expression intensity, gender and facial emotion recognition: Women recognize only subtle facial emotions better than men. Acta Psychologica, 135, 278283. http://dx.doi.org/10.1016/j.actpsy.2010.07.012 Google Scholar
Jehna, M., Neuper, C., Petrovic, K., Wallner-Blazek, M., Schmidt, R., Fuchs, S., … Enzinger, C. (2010). An exploratory study on emotion recognition in patients with a clinically isolated syndrome and multiple sclerosis. Clinical Neurology and Neurosurgery, 112, 482484. http://dx.doi.org/10.1016/j.clineuro.2010.03.020 Google Scholar
Kamboj, S., & Curran, H. (2006a). Scopolamine induces impairments in the recognition of human facial expressions of anger and disgust. Psychopharmacology, 185, 529535. http://dx.doi.org/10.1007/s00213-006-0332-4 CrossRefGoogle ScholarPubMed
Kamboj, S., & Curran, H. (2006b). Neutral and emotional episodic memory: Global impairment after lorazepam or scopolamine. Psychopharmacology, 188, 482488. http://dx.doi.org/10.1007/s00213-006-0552-7 Google Scholar
Keesey, J. (1999). Does myasthenia gravis affect the brain? Journal of Neurological Science, 170, 7789. http://dx.doi.org/10.1016/S0022-510X(99)00205-1 Google Scholar
Kessler, H., Bayerl, P., Deighton, R., & Traue, H. (2002). Facially Expressed Emotion Labelling (FEEL): PC-gestützter Test zur Emotionserkennung. [Facially Expressed Emotion Labeling (FEEL): A computer test for emotion recognition]. Verhaltenstherapie und Verhaltensmedizin, 23, 297306.Google Scholar
Kipps, C., Duggins, A., McCusker, E., & Calder, A. (2007). Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington’s disease. Journal of Cognitive Neuroscience, 19, 12061217. http://dx.doi.org/10.1162/jocn.2007.19.7.1206 CrossRefGoogle ScholarPubMed
Kobayakawa, M., Tsuruya, N., Takeda, A., Suzuki, A., & Kawamura, M. (2010). Facial emotion recognition and cerebral white matter lesions in myotonic dystrophy type 1. Journal of the Neurological Sciences, 290, 4851. http://dx.doi.org/10.1016/j.jns.2009.11.011 CrossRefGoogle ScholarPubMed
Kojevnikov, A. (1986). Some aspects of myasthenia gravis. Annals of the New York Academy of Sciences, 135, 406.Google Scholar
Kuks, J., & Oosterhuis, H. (2003). Clinical presentation and epidemiology of myasthenia gravis. In Kaminski, H (Ed.), Current clinical neurology: Myasthenia gravis and related disorders (pp. 93113). Totowa, NJ: Human Press.Google Scholar
LeDoux, J. (2007). The amygdala. Current Biology, 17, 868874. http://dx.doi.org/10.1016/j.cub.2007.08.005 CrossRefGoogle ScholarPubMed
Levin, E., MecClernon, J., & Rezvani, A. (2006). Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology, 184, 523539. http://dx.doi.org/10.1007/s00213-005-0164-7 CrossRefGoogle ScholarPubMed
Lindquist, K., Wager, T., Kober, H., Bliss-Moreau, E., & Feldman, L. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121143. http://dx.doi.org/10.1017/S0140525X11000446 Google Scholar
Mao, Z., Mo, X., Qin, C., Lai, Y., & olde Hartman, T. (2010). Course and prognosis of myasthenia gravis: A systematic review. European Journal of Neurology, 17, 913921. http://dx.doi.org/10.1111/j.1468-1331.2010.03017.x Google Scholar
Matsumoto, D., & Ekman, P. (1988). Japanese and Caucasian facial expressions of emotion (IACFEE) [Slides]. San Francisco, CA: Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University.Google Scholar
Mazzola, F., Seigal, A., MacAskill, A., Corden, B., Lawrence, K., & Skuse, D. (2006). Eye tracking and fear recognition deficits in Turner syndrome. Social Neuroscience, 1, 259–169. http://dx.doi.org/10.1080/17470910600989912 Google Scholar
McLellan, T., Johnson, L., Dalrymple-Alford, J., & Poeter, R. (2008). The recognition of facial expressions of emotion in Alzheimer´s disease: A review of findings. Acta Neuropsychiatrica, 20, 236250. http://dx.doi.org/10.1111/j.1601-5215.2008.00315.x Google Scholar
Meriggioli, M., & Sanders, D. (2009). Autoimmune myasthenia gravis: Emerging clinical and biological heterogeneity. Lancet Neurology, 8, 475490. http://dx.doi.org/10.1016/S1474-4422(09)70063-8 CrossRefGoogle ScholarPubMed
Mesulam, M. (2004). The cholinergic lesion of Alzheimer´s disease: Pivotal factor or side show? Learning and Memory, 11, 4349. http://dx.doi.org/10.1101/lm.69204 Google Scholar
Miwa, J., Freedman, R., & Lester, H. (2011). Neural systems governed by nicotinic acetylcholine receptors: Emerging hypotheses. Neuron, 70, 2033. http://dx.doi.org/10.1016/j.neuron.2011.03.014 CrossRefGoogle ScholarPubMed
Osserman, K. (1958). Myasthenia gravis. New York, NY: Grune and Stratton.Google ScholarPubMed
Pérez-Albéniz, A., Paúl, J., Montes, M. P., & Torres, E. (2003). Adaptación de Interpersonal Reactivity Index (IRI) al español. [Validation of the Spanish version of the Interpersonal Reactivity Index]. Psicothema, 15, 267272.Google Scholar
Philips, L. (2003). The epidemiology of myasthenia gravis. Annals of the New York Academy of Sciences, 998, 407412. http://dx.doi.org/10.1196/annals.1254.053 Google Scholar
Posamienter, M., & Abdi, H. (2003). Processing faces and facial expressions. Neuropsychology Review, 13, 113143.Google Scholar
Sitek, W., Bilinska, M., Wieczorek, D., & Nyka, W. (2009). Neuropsychological assessment in myasthenia gravis. Neurological Sciences, 30, 914. http://dx.doi.org/10.1007/s10072-008-0001-y Google Scholar
Sprengelmeyer, R., Young, A., Sprengelmeyer, A., Calder, A., Rowland, D., Perrett, D., … Lange, H. (1997). Recognition of facial expression: Selective impairment of specific emotions in Huntington´s disease. Cognitive Neuropsychology, 14, 839879. http://dx.doi.org/10.1080/026432997381376 Google Scholar
Thomsen, M., Hansen, H., Timmerman, D., & Mikkelsen, J. (2010). Cognitive improvement by activation of α7 nicotinic acetylcholine receptors: From animal models to human pathophysiology. Current Pharmaceutical Design, 16, 323343. http://dx.doi.org/10.2174/138161210790170094 Google Scholar
Tucker, D., Roeltgen, D., Wann, P., & Wertheimer, R. (1988). Memory dysfunction in myasthenia gravis: Evidence for central cholinergic effects. Neurology, 38, 11731177. http://dx.doi.org/10.1212/WNL.38.8.1173 Google Scholar
Ybarra, M., Kummer, A., Comini, E., Oliveira, J., Gómez, R., & Texeira, A. (2011). Psychiatric Disorders in myasthenia gravis. Arquivos de Neuro-Psiquiatría, 69, 176179. http://dx.doi.org/10.1590/S0004-282X2011000200006 CrossRefGoogle ScholarPubMed
Whittington, J., & Holland, T. (2011). Recognition of emotion in facial expression by people with Prader-Willi syndrome. Journal of Intellectual Disability Research, 55, 7584. http://dx.doi.org/10.1111/j.1365-2788.2010.01348.x CrossRefGoogle ScholarPubMed
Winblad, S., Hellström, P., Lindberg, C., & Hansen, S. (2006). Facial emotion recognition in myotonic dystrophy type 1 correlates with CTG repeat expansion. Journal of Neurological, Neurosurgery and Psychiatry, 77, 219223. http://dx.doi.org/10.1136/jnnp.2005.070763.CrossRefGoogle ScholarPubMed