Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T13:44:12.189Z Has data issue: false hasContentIssue false

Neuropsychological Disorders Indicative of Postresuscitation Encephalopathy in Rats

Published online by Cambridge University Press:  10 April 2014

Natalia A. Gorenkova*
Affiliation:
Institute of General Reanimatology, Russian Academy of Sciences, Moscow
Irina V. Nazarenko
Affiliation:
Institute of General Reanimatology, Russian Academy of Sciences, Moscow
Aleksandr V. Volkov
Affiliation:
Institute of General Reanimatology, Russian Academy of Sciences, Moscow
Maria Sh. Avruschenko
Affiliation:
Institute of General Reanimatology, Russian Academy of Sciences, Moscow
Gennady B. Lapa
Affiliation:
Institute of Pharmacology, Russian Academy of Sciences, Moscow
Georgi I. Kovalev
Affiliation:
Institute of Pharmacology, Russian Academy of Sciences, Moscow
Lidia V. Molchanova
Affiliation:
Institute of General Reanimatology, Russian Academy of Sciences, Moscow
*
Address correspondence to: Natalia Gorenkova, Research Institute of General Reanimathology, Russian Academy of Medical Sciences, Laboratory of General Pathology, Petrovka Str. 25/2, 103031, Moscow, Russia. Phone: 007-095-2002910 Fax: 007-095-2002708 E-mail: nat-gor@mail.ru

Abstract

The aim of this research was to study the effect of 12-minute clinical death on innate and acquired behavior, biogenic amine concentration, and the composition and quantity of neural populations in specific brain regions of white rats. The study shows that in animals during the postresuscitation period with formal restoration of neurological status, there are changes in emotional reactivity, orientation-exploration reactions, impairment of learning and memory, decrease in exercise tolerance and pain sensitivity. These processes are accompanied by alterations in serotonin and norepinephrine levels in the frontal cerebral cortex, dopamine and serotonin levels in the striatum, certain biochemical indices in blood plasma and neural loss in the CA1 sector of the hippocampus and lateral portions of the cerebellum.

El propósito de este estudio fue examinar el efecto de una muerte clínica de 12 minutos de duración sobre el comportamiento innato y adquirido, la concentración amino biogénica, y la composición y cantidad de las poblaciones neuronales en regiones específicas en ratas blancas. El estudio muestra que durante el período con restauración formal del estatus neurológico, hay cambios en los animales en la reactividad emocional, las reacciones de orientación-exploración, trastornos de aprendizaje y memoria, reducción de la tolerancia al ejercicio y la sensibilidad al dolor. Estos procesos se acompañan de alteraciones en los niveles de serotonina y norepinefrina en la corteza cerebral frontal, en los niveles de dopamina y serotonina en el cuerpo estriado, ciertos índices bioquímicos en el plasma sanguíneo y pérdida neuronal en el sector CA1 del hipocampo y en porciones laterales del cerebelo.

Type
Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseeva, G.V. (1979). Nevrologicheskie narushenia v otdalennom periode posle terminalnykh sostoianiy (Neurologic disorders in the late period following terminal states). Zhurnal Nevropatologii i Psikhiatrii im. S.S.Korsakova, 79, 9981001.Google Scholar
Amano, M., Hasegawa, M., Hasegawa, T., & Nabeshima, T. (1993). Characteristics of transient cerebral ischemia-induced deficit on various learning and memory tasks in male Mongolian gerbils. Japan Journal of Pharmacology, 63, 469477.CrossRefGoogle ScholarPubMed
Ashmarin, I.P., Levitskaya, N.G., Antonova, L.V., & Nezavibatko, V.N. (1994). The neurotropic activity of structural analog of ACTH(5-7). Regulatory Peptides, 51, 4954.CrossRefGoogle ScholarPubMed
Avrushchenko, M.Sh. (1994). Izmenenia geterogennykh neironnykh populiatsiy v postreanimatsionnom periode posle ostanovki serdtsa u krys (Changes in heterogeneous neuron populations in the postresuscitation period after heart arrest in rats). Anesteziologia i Reanimatologia, Sept-Oct(5), 41–4.Google Scholar
Bazian, A.S. (2001). Vzaimodeistvie mediatornykh i moduliatornykh sistem mozga i ikh rol v razvitii psikhofiziologicheskikh i psikhopatologicheskih izmeneniy (Interaction of the brain mediator and modulator systems and their role in development of psychophysiological and psyhopathological conditions). Uspekhi Fisiologicheskikh Nauk, 32, 322.Google Scholar
Borszer, G.S., Liehtman, A.H., & Hughes, H.C. (1990). Comparison of escape and tail flick thresholds in the rat: A psychophysical analysis of morphine hypoalgesia. Physiology and Behavior, 47, 10171022.Google Scholar
Buresch, J., Bureschova, O., & Huston, G.P. (1991). Metodiki i osnovnye eksperimenty po izucheniu mozga i povedenia (Methods and basic experiments for brain and behavior research). Moscow: Vysshaia Shkola.Google Scholar
Buwalda, B., Nyakas, C., Vosselman, H.J., & Luiten, P.G.M. (1995). Effects of early postnatal anoxia on adult learning and emotion in rats. Behaviour Brain Research, 67, 8590.CrossRefGoogle ScholarPubMed
Drysdale, E.E., Grubb, N.R., Fox, K.A., & O'Carroll, R.E. (2000). Chronicity of memory impairment in long-term out-of-hospital cardiac arrest survivors. Resuscitation, 47, 2732.CrossRefGoogle ScholarPubMed
Gerhardt, S.C., & Boast, C.A. (1988). Motor activity changes following cerebral ischemia in gerbils are correlated with the degree of neuronal degeneration in hippocampus. Behaviour Neuroscience, 102, 301303.CrossRefGoogle ScholarPubMed
Grubb, N.R., O'Carroll, R., Cobbe, S.M., Sirel, J., & Fox, K.A. (1996). Chronic memory impairment after cardiac arrest outside hospital. British Medical Journal, 313, 43146.CrossRefGoogle ScholarPubMed
Gurvitch, A.M., Alekseeva, G.V., & Semchenko, V.V. (1996). Postreanimatsionnaia entsefalopatia (patogenez, klinika, profilaktika i lechenie (Postresuscitation encephalopathy [pathogenesis, clinic, prophylaxis, and therapy]), Omsk, Russia: Omskaia oblastnaia tipografia.Google Scholar
Gurvich, A.M., Mutuskina, E.A., & Mirotvornaia, G.N. (1986). Korrelatsia mezhdu dinamikoi postreanimatsionnogo vosstanovlenia mozgovogo krovoobrashchenia i tiazhestiu postreanimatsionnykh strukturno-funktsionalnykh narusheniy mozga (Correlation between the type of post-resuscitation dynamics of cerebral circulation and the severity of post-resuscitation disorders of the function and structure of the brain). Anesteziologia i Reanimatologia, Mar-Apr(2), 35–8.Google Scholar
Hara, H., Sukamoto, T., & Kogure, K. (1993). Mechanism and pathogenesis of ischemia-induced neuronal damage. Progress in Neurobiology, 40, 645670.CrossRefGoogle ScholarPubMed
Hattori, K., Lee, H., Hurn, P.D., & Crain, B.J. (2000). Cognitive deficits after focal cerebral ischemia in mice. Stroke, 31, 1939–44.CrossRefGoogle ScholarPubMed
Kato, M., Iwata, H., Katayama, T., Asai, H., Narita, H., & Endo, T. (1997). Possible therapeutic effect of T-794, a novel reversible inhibitor of monoamine oxidase-A, on post-stroke emotional disturbances, assessed in animal models of depression. Biological & pharmaceutical bulletin, 20(4), 349–53.CrossRefGoogle ScholarPubMed
Kharchenko, I.B. (1996). Otstavlennye izmenenia reguliatsii arterialnogo davlenia i reaktivnosti sosudov u krys posle perenesennoi ostanovki krovoobrashchenia (Deferred alterations in the regulation of blood pressure and vascular reactivity in rats after circulation arrest). Unpublished doctoral dissertation abstract, Moscow.Google Scholar
Korpachev, V.G., Lysenkov, S.P., & Tel, L.Z. (1982). Modelirovanie klinicheskoi smerti i postreanimatsionnoi bolezni u krys (Modeling clinical death and postresuscitation disease in rats). Patologia, Fiziologia i Eksperimentalnaia Terapia, May-Jun(3), 7880.Google Scholar
Kulagin, D.A., & Bolondinskii, V.K. (1986). Neirokhimicheskie aspekty emotsionalnoi reaktivnosti i dvigatelnoi aktivnosti u krys v usloviakh neznakomoi obstanovki (Neurochemical aspects of the emotional reactivity and motor activity of rats in new circumstances). Uspekhi Fisiologicheskikh Nauk, 17, 92109.Google Scholar
Lysenkov, S.P., Korpachev, V.G., & Tel, L.Z. (1982). Balnaia otsenka obschego sostoiania krys, pereneschikh klinicheskuiu smert (Point assessment of the general state of rats surviving clinical death). In Klinika, patogenez i lechenie neotloznykh sostianiy (Clinical manifestation, pathogenesis and treatment of emergency states) (pp.813). Novosibirsk, Russia: Nauka.Google Scholar
Maklakova, A.S., Dubynin, V.A., Nazarenko, I.V., Nezavibatko, V.N., & Alfeeva, L.A. (1995). Effekt beta-kazomorfina-7 na razlichnye tipy obuchenia belykh krys (Effect of beta-casomorphine-7 on different types of training of white rats). Bulleten Eksperimentalnoi Biologii i Meditsiny, 120, 499502.Google Scholar
Markel, A.M. (1981). Kotsenke osnovnykh kharakteristik povedenia krys v teste “otkrytoe pole” (A system for the estimation of the main characteristics of the rats' behavior in the Open Field Test) Zhurnal Vysshei Nervnoi Deiatelnosti im. Pavlova, 31, 301307.Google Scholar
Mileson, B.E., & Schwartz, R.D. (1991). The use of locomotor activity as a behavioral screen for neuronal damage following transient forebrain ischemia in gerbils. Neuroscience Letters, 128, 7176.CrossRefGoogle ScholarPubMed
Mori, K., Togashi, H., Ueno, K.I., Matsumoto, M., & Yoshioka, M. (2001). Aminoguanidine prevented the impairment of learning behavior and hippocampal long-term potentiation following transient cerebral ischemia. Behavior Brain Research, 120, 159–68.CrossRefGoogle ScholarPubMed
Negovsky, V.A., Gurvitch, A.M., & Zolotokrylina, E.S. (1987). Postreanimatsionnaia bolezn (Postresuscitation Desease). Moscow: Meditsina.Google Scholar
Rodina, V.I., Krupina, N.A., Kryzhanovskii, G.N., & Oknina, N.B. (1993). Mnogoparametrovyi metod kompleksnoi otsenki trevozhno-fobicheskikh sosstoianiy u krys (A multiparameter method for the complex evaluation of anxiety-phobic states in rats). Zhurnal Vysshei Nervnoi Deiatelnosti im. Pavlova, 43, 10061011.Google Scholar
Sauve, M.J., Doolittle, N., Walker, J.A., Paul, S.M., & Scheinman, M.M. (1996). Factors associated with cognitive recovery after cardiopulmonary resuscitation. American Journal of Critical Care, 5, 127–39.CrossRefGoogle ScholarPubMed
Shilova, O.B., Kovalev, G.I., Lilp, I.G., Korochkin, L.I., & Poletaeva, I.I. (1998). Uroven monoaminergicheskikh mediatorov i ikh osnovnykh metabolitov v gippokampe i stvole mozga u krys posle vvedenia adrenokortikotropnogo gormona AKTG(4-10) (Levels of monoaminergic neuromediators and their main metabolites in mouse hippocampus and brain stem after administration of adrenocorticotropic hormone ACTH(4-10)). Bulleten Eksperimentalnoi Biologii i Meditsiny, 126, 350–2.Google Scholar
Titov, S.A., & Kamensky, A.A. (1980). Rol orientirovochnogo i oboronitelnogo komponenta v povedenii belykh krys v usloviakh otkrytogo polia. (The role of orientation and defensive components of white rat behavior in Open Field conditions). Zhurnal Vysshei Nervnoi Deiatelnosti im. Pavlova, 30, 704709.Google Scholar
Zarzhetsky, Yu.V. (2004). Neirofiziologicheksie mekhanizmy integrativnoi deiatelnosti mozga krys v postreanimatsionnom sostoianii (Neurophisiological mechanisms of rats integrative brain functions in postresuscitation period). Unpublished doctoral dissertation abstract, Moscow.Google Scholar