Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:01:46.220Z Has data issue: false hasContentIssue false

6. Magneto-hydrodynamic experiments

Published online by Cambridge University Press:  18 July 2016

B. Lehnert*
Affiliation:
Royal Institute of Technology, Stockholm, Sweden

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comparisons are made between magneto-hydrodynamics on cosmical and on laboratory scale. Magneto-hydrodynamic waves, turbulence, the generation of magnetic fields and thermal convection are discussed and a review is given of earlier experimental investigations. The possibilities are examined of realizing cosmical phenomena of this type in the laboratory.

Type
Part I: Magneto-Hydrodynamics
Copyright
Copyright © Cambridge University Press 1958 

References

1. Alfvén, H. Cosmical Electrodynamics (Oxford University Press, 1950).Google Scholar
2. Lamb, H. Hydrodynamics , Dover Publ., New York, sixth ed., 1932, p. 580.Google Scholar
3. Lehnert, B. Tellus , 8, no. 2, 241, 1956.Google Scholar
4. Lundquist, S. Ark. Fys. 5, no. 15, 297, 1952.Google Scholar
5. Lyon, N. Liquid metals handbook , Atomic Energy Commission, Dept. of the Navy, Washington D.C., NAVEXOS P-733 (Rev.) 2nd ed., June 1952.Google Scholar
6. Jackson, B. Liquid metals handbook, sodium-NaK supplement, Atomic Energy Commission, Dept. of the Navy, Washington D.C., NAVEXOS P-733 (Rev.) 3rd ed., July 1955.Google Scholar
7. Elsasser, W. M. Rev. Mod. Phys. 22, no. 1, 28, 1950.Google Scholar
8. Elsasser, W. M. Phys. Rev. 95, no. 1, 1, 1954.Google Scholar
9. The Sun , ed. by Kuiper, G. P. Chicago University Press, 1953.Google Scholar
10. The Earth as a Planet , ed. by Kuiper, G. P. Chicago University Press, 1954.Google Scholar
11. Chandrasekhar, S. Phil. Mag. (7), 43, no. 340, 501, 1952 and 45, 1177, 1954.Google Scholar
12. Allen, C. W. Astrophysical Quantities (University of London, The Athlone Press, 1955).Google Scholar
13. Lochte-Holtgreven, W. Private communication, 1956.Google Scholar
14. Lehnert, B. Quart. Appl. Math. 12, no. 4, 321, 1955.Google Scholar
15. Lundquist, S. Nature, Lond. 164, 145, 1949.Google Scholar
16. Lundquist, S. Phys. Rev. 76, 1805, 1949.Google Scholar
17. Lehnert, B. Phys. Rev. 94, 815, 1954.CrossRefGoogle Scholar
18. Bostick, W. H. and Levine, M. A. Phys. Rev. 87, 671, 1952.Google Scholar
19. Bostick, W. H. and Levine, M. A. Magneto-hydrodynamic waves generated in an ionized gas in a toroidal tube having an annular D–C magnetic field , Sci. Rep. no. 3, 1952, Dept. of Physics, Tufts College, Mass.Google Scholar
20. Bostick, W. H. and Levine, M. A. Phys. Rev. 97, 13, 1955.Google Scholar
21. Hartmann, J. Math.-fys. Medd. 15, 1937, no. 6.Google Scholar
22. Hartmann, J. and Lazarus, F. Math.-fys. Medd. 15, 1937, no. 7.Google Scholar
23. Lehnert, B. Ark. Fys. 5, no. 5, 69, 1952.Google Scholar
24. Lock, R. C. Proc. Roy. Soc. A , 233, 105, 1955.Google Scholar
25. Murgatroyd, W. Nature, Lond. 171, 217, 1953.CrossRefGoogle Scholar
26. Murgatroyd, W. Phil. Mag. (7), 44, 1348, 1953.Google Scholar
27. Kolin, A. Rev. Sci. Instrum. 16, 109, 1945.CrossRefGoogle Scholar
28. Kolin, A. Rev. Sci. Instrum. 16, 209, 1945.Google Scholar
29. Arnold, J. S. Rev. Sci. Instrum. 22, 43, 1951.Google Scholar
30. Murgatroyd, W. The model testing of electromagnetic flow meters , Atomic Energy Res. Est., Harwell, Rep. X/R, 1053, 6+iii pp., 1953.Google Scholar
31. Shercliff, J. A. Proc. Camb. Phil. Soc. 49, 136, 1953.Google Scholar
32. Shercliff, J. A. The theory of the d.c. electromagnetic flow meter for liquid metals , Atomic Energy Res. Est., Harwell, Rep. X/R, 1052, 23 + iv pp., 1953.Google Scholar
33. Shercliff, J. A. J. Appl. Phys. 25, 817, 1954.CrossRefGoogle Scholar
34. Shercliff, J. A. J. Sci. Instrum. 32, 441, 1955.Google Scholar
35. Shercliff, J. A. Proc. Roy. Soc. A , 233, 396, 1955.Google Scholar
36. Greenhill, M. Electromagnetic pumps and flowmeters , Atomic Energy Res. Est., Harwell, Inf./Bib. 93, 3, 1954.Google Scholar
37. Greenhill, M. Electromagnetic pumps and flowmeters , Atomic Energy Res. Est., Harwell, Inf./Bib. 93, 4 (second edition), 1955.Google Scholar
38. Robin, M. J. Rech. Cent. Nat. Rech. Sci. 5, 187, 1953.Google Scholar
39. Barnes, A. H. Nucleonics , 11, 16, 1953.Google Scholar
40. Bullard, E. C. and Gellman, H. Phil. Trans. 247, 213, 1954.Google Scholar
41. Alfvén, H. Tellus , 2, 74, 1950.Google Scholar
42. Lundquist, S. Phys. Rev. 83, 307, 1951.CrossRefGoogle Scholar
43. Biermann, L. Z. Naturf. 5a, Heft 2, 65, 1950.Google Scholar
44. Schlüter, A. Z. Naturf. 5a, Heft 2, 72, 1950.Google Scholar
45. Lochte-Holtgreven, W. and Schilling, P. O. Naturwissenschaften , 40, 387, 1953.Google Scholar
46. Schilling, P. and Lochte-Holtgreven, W. Nature, Lond. 172, 1054, 1953.Google Scholar
47. Schilling, P. and Lochte-Holtgreven, W. Z. Naturf. 9a, Heft 6, 520, 1954.Google Scholar
48. Burhorn, F., Griem, H. and Lochte-Holtgreven, W. Naturwissenschaften , 40, 387, 1953.Google Scholar
49. Burhorn, F., Griem, H. and Lochte-Holtgreven, W. Nature, Lond. 172, 1053, 1954.Google Scholar
50. Burhorn, F., Griem, H. and Lochte-Holtgreven, W. Z. Phys. 137, 175, 1954.Google Scholar
51. Bostick, W. H. Experimental study of ionized matter projected across a magnetic field , Univ. of California, Radiation Laboratory, Livermore, California, Contract no. W-7405-eng-48, 1956.Google Scholar
52. Colgate, S. A. Liquid sodium instability experiment, Part I, 1955 , Univ. of California, Radiation Laboratory, Livermore Site, Livermore, California, Contract no. W-7405-eng-48, UCRL-4560, Cy 6.Google Scholar
53. Lehnert, B. Tellus , 4, no. 1, 63, 1952.Google Scholar
54. Lehnert, B. Proc. Roy. Soc. A , 233, 299, 1955.Google Scholar
55. Thompson, W. B. Phil. Mag. (7), 42, 1417, 1951.Google Scholar
56. Nakagawa, Y. Nature, Lond. 175, 417, 1955.Google Scholar
57. Jirlow, K. Tellus , 8, no. 2, 252, 1956.Google Scholar
58. Lehnert, B. and Little, N. C. Tellus , 9, 97, 1957 Google Scholar