Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T21:56:02.088Z Has data issue: false hasContentIssue false

Creation and Destruction of 7Li and 3He in RGB and AGB Stars

Published online by Cambridge University Press:  25 May 2016

I.-Juliana Sackmann
Affiliation:
W. K. Kellogg Radiation Laboratory 106-38, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Arnold I. Boothroyd
Affiliation:
W. K. Kellogg Radiation Laboratory 106-38, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Early in this decade our theoretical work demonstrated that all AGB stars in the mass range ˜ 4 to ˜ 7 M pass through a stage when a tremendous amount of lithium [up to log ε(7Li) ˜ 4.5] is created and transported to the surface. These lithium-rich AGB stars are predicted to occupy a narrow luminosity range between Mbol = −6 and −7, in excellent agreement with the observations of Smith & Lambert (1989), and might be useful as approximate standard candles. Recently, we found that even low mass stars (˜ 1 to ˜ 2 M) on the RGB could create a tremendous amount of surface lithium. In both the AGB and RGB cases, it is the Cameron-Fowler mechanism that is responsible for the lithium creation.

In the AGB stars, it is hot bottom burning (nuclear burning at the base of the convective envelope) that produces the lithium. In the RGB stars, it is “cool bottom processing” that can lead to either lithium production or destruction. Cool bottom processing results when extra mixing (presumably rotation-induced) transfers material from the cool convective envelope down to the outer wing of the hydrogen-burning shell (where nuclear reactions can take place) and back out to the envelope. If the extra mixing is slow, 7Li is destroyed; if it is fast enough, then 7Li is created - for sufficiently fast and deep extra mixing, log ε(7Li) ˜ 4 is possible.

Unlike 7Li, the 3He abundance is almost independent of the mixing speed, and is constrained by observations of 12C/13C or [C/Fe] on the RGB. Cool bottom processing causes low mass stars of sub-solar metallicity to be net destroyers of 3He, rather than net producers. This is in contrast to previous theoretical predictions, and has a far-reaching effect on our understanding of galactic chemical evolution of 3He.

Type
2. Production and Destruction of the Elements
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Abia, C., Boffin, H. M. J., Isern, J., & Rebolo, R. 1991, ApJ, 245, L1 Google Scholar
Brown, J. A., Sneden, C., Lambert, D. L., & Dutchover, E. Jr. 1989, ApJS, 71, 293 CrossRefGoogle Scholar
Boesgaard, A. M. 1970, ApJ, 161, 1003 CrossRefGoogle Scholar
Boothroyd, A. I., & Sackmann, I.-J. 1999, ApJ, 510, 232 CrossRefGoogle Scholar
Cameron, A.G.W. 1955, ApJ, 121, 144 CrossRefGoogle Scholar
Cameron, A.G.W., & Fowler, W. A. 1971, ApJ, 164, 111 CrossRefGoogle Scholar
Charbonnel, C. 1994, A&A, 282, 811 Google Scholar
Charbonnel, C. 1995, ApJ, 453, L41 CrossRefGoogle Scholar
Dearborn, D., Eggleton, P. P., & Schramm, D. N. 1976, ApJ, 203, 455 CrossRefGoogle Scholar
da Silva, L., de la Reza, R., & Barbuy, B. 1995, ApJ, 448, L41 Google Scholar
de la Reza, R., Drake, N. A., & da Silva, L. 1996, ApJ, 456, L115 CrossRefGoogle Scholar
Denn, G. R., Luck, R. E., & Lambert, D. L. 1991, ApJ, 377, 657 CrossRefGoogle Scholar
Gregorio-Hetem, J., Castilho, B. V., & Barbuy, B. 1993, A&A, 268, L25 Google Scholar
Gregorio-Hetem, J., Lépine, J. R. D., Quast, G. R., Torres, C. A. O., & de la Reza, R. 1992, AJ, 103, 549 CrossRefGoogle Scholar
McKellar, A. 1940, PASP, 52, 407 CrossRefGoogle Scholar
Iben, I. Jr. 1973, ApJ, 185, 209 CrossRefGoogle Scholar
Iben, I. Jr. 1975, ApJ, 196, 525 CrossRefGoogle Scholar
Plez, B., Smith, V. V., & Lambert, D. L. 1993, ApJ, 418, 812 CrossRefGoogle Scholar
Sackmann, I.-J., & Boothroyd, A. I. 1991, ApJ, 366, 529 CrossRefGoogle Scholar
Sackmann, I.-J., & Boothroyd, A. I. 1992, ApJ, 392, L71 CrossRefGoogle Scholar
Sackmann, I.-J., & Boothroyd, A. I. 1999, ApJ, 510, 217 CrossRefGoogle Scholar
Sackmann, I.-J., Boothroyd, A. I., & Fowler, W. A. 1990, ApJ, 360, 727 CrossRefGoogle Scholar
Sackmann, I.-J., Smith, R. L., & Despain, K. H. 1974, ApJ, 187, 555 CrossRefGoogle Scholar
Scalo, J. M., Despain, K. H., & Ulrich, R. K. 1975, ApJ, 196, 805 CrossRefGoogle Scholar
Smith, V. V., & Lambert, D. L. 1989, ApJ, 345, L75 CrossRefGoogle Scholar
Smith, V. V., & Lambert, D. L. 1990, ApJ, 361, L69 CrossRefGoogle Scholar
Sweigart, A. V., & Mengel, J. G. 1979, ApJ, 229, 624 CrossRefGoogle Scholar
Ventura, P., D'Antona, F., & Mazzitelli, I. 1999, ApJ, 524, L111 CrossRefGoogle Scholar
Wallerstein, G. & Conti, P. S. 1969, ARA&A, 7, 99 Google Scholar
Wallerstein, G. & Sneden, C. 1982, ApJ, 255, 577 CrossRefGoogle Scholar
Wasserburg, G. J., Boothroyd, A. I., & Sackmann, I.-J. 1995, ApJ, 447, L37 CrossRefGoogle Scholar