No CrossRef data available.
Published online by Cambridge University Press: 08 February 2017
The observations of solar oscillations provide an unrivalled, precise way of probing the solar interior. In this paper, I consider the observations and their interpretation in terms of the physics of the Sun. The oscillations that we are concerned with here are the so-called p modes, i.e. oscillations for which pressure is the restoring force. The modes for which gravity is the restoring force have yet to be unambiguously detected on the Sun. The observations are made either as Doppler velocity or as intensity and are, in general, very small effects. To get an impression of the precision required, consider that in integrated velocity the total signal is ~ 1 m s−1 with the strongest individual modes being about 15-20 cm s−1. The weakest, detected modes are of order a few mm s−1. When this signal is measured as a Doppler shift, v/c is a few parts in 1011. The observations are made by a variety of instruments on Earth or in Space which can be simply divided into those which observe the Sun as a star and those which image the solar surface into many pixels Although there are many different observers using many different techniques, in all cases one is analysing light emitted from a region relatively high in the atmosphere of the Sun. When one considers how these measurements can be interpreted in terms of the solar oscillations, two issues arise:
1. Roughly where in the solar atmosphere are the lines formed?
2. How different are the heights of formation for different lines?
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.