Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T14:41:23.841Z Has data issue: false hasContentIssue false

Data for Probing the Sun

Published online by Cambridge University Press:  08 February 2017

Yvonne Elsworth*
Affiliation:
School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT UK, E-mail: ype@star.sr.bham.ac.uk

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The observations of solar oscillations provide an unrivalled, precise way of probing the solar interior. In this paper, I consider the observations and their interpretation in terms of the physics of the Sun. The oscillations that we are concerned with here are the so-called p modes, i.e. oscillations for which pressure is the restoring force. The modes for which gravity is the restoring force have yet to be unambiguously detected on the Sun. The observations are made either as Doppler velocity or as intensity and are, in general, very small effects. To get an impression of the precision required, consider that in integrated velocity the total signal is ~ 1 m s−1 with the strongest individual modes being about 15-20 cm s−1. The weakest, detected modes are of order a few mm s−1. When this signal is measured as a Doppler shift, v/c is a few parts in 1011. The observations are made by a variety of instruments on Earth or in Space which can be simply divided into those which observe the Sun as a star and those which image the solar surface into many pixels Although there are many different observers using many different techniques, in all cases one is analysing light emitted from a region relatively high in the atmosphere of the Sun. When one considers how these measurements can be interpreted in terms of the solar oscillations, two issues arise:

  1. 1. Roughly where in the solar atmosphere are the lines formed?

  2. 2. How different are the heights of formation for different lines?

Type
I. Global Structure and Evolution of the Solar and Stellar Interior
Copyright
Copyright © Kluwer 1998 

References

Antia, H. M. & Basu, S., 1994, ApJ, 426, 801.CrossRefGoogle Scholar
Appourchaux, T., Chaplin, W. J., Elsworth, Y., Isaak, G. R., McLeod, C. P., Miller, B. A. & New, R., 1997, these proceedings.Google Scholar
Basu, S. & Antia, H. M., 1995, MNRAS, 276, 1402.Google Scholar
Basu, S., Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y., Isaak, G. R., New, R., Schou, J., Thompson, M. J. & Tomczyk, S., 1997, MNRAS in press.Google Scholar
Brown, T. M. & Christensen-Dalsgaard, J., 1990, ApJ, 349, 667.CrossRefGoogle Scholar
Chaplin, W. J., Elsworth, Y., Isaak, G. R., McLeod, C. P., Miller, B. A. & New, R., 1996, Sol. Phy., 168, 1.CrossRefGoogle Scholar
Chaplin, W. J., Elsworth, Y., Isaak, G. R., McLeod, C. P., Miller, B. A. & New, R., 1997, these proceedings.Google Scholar
Christensen-Dalsgaard, J., Proffitt, C. R. & Thompson, M. J., 1993, ApJ, 403, L75.CrossRefGoogle Scholar
Christensen-Dalsgaard, J. & Berthomieu, G., 1991, in: Solar Interior and Atmosphere, eds. Cox, A. N., Livingston, W. C., Matthews, M., Univ. of Arizona Press, Tuscon, p. 401.Google Scholar
Christensen-Dalsgaard, J., 1984, in: Space Research Prospects in Stellar Activity and Variability, ed. Praderie, F., Paris Observatory Press, p. 11.Google Scholar
Christensen-Dalsgaard, J. et al, 1996, Science, 272, 1286.CrossRefGoogle Scholar
Cox, A. N., Guzik, J. A. & Kidman, R. B., 1989, ApJ, 342, 1187.CrossRefGoogle Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P. & New, R., 1990, Nature, 347, 536.CrossRefGoogle Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., & New, R., 1990, Nature, 345, 322.CrossRefGoogle Scholar
Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C. P., Miller, B. A., New, R., Speake, C. C. & Wheeler, S.J., 1994, MNRAS, 529, 537.Google Scholar
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A., New, R., Speake, C. C. & Wheeler, S. J., 1994, ApJ, 434, 801.CrossRefGoogle Scholar
Fröhlich, C. et al., 1997, Sol. Phys., 170, 1.CrossRefGoogle Scholar
Gough, D. O., 1990, in: Progress of Seismology of the Sun and Stars, p. 302, eds. Osaki, Y. & Shibahashi, H., Springer-Verlag, Berlin.Google Scholar
Gough, D. O. et al., 1996, Science, 272, 1281.CrossRefGoogle Scholar
Guzik, J. A. & Swenson, F. J., 1997, ApJ, 491, in press.CrossRefGoogle Scholar
Kosovichev, A. G. et al., 1992, MNRAS, 259, 536.CrossRefGoogle Scholar
Lazrek, M. et al., 1997, Sol. Phys. in press.Google Scholar
Libbrecht, K. G. & Woodard, M. F., 1990, Nature, 345, 779.CrossRefGoogle Scholar
Libbrecht, K. G., 1992, ApJ, 336, 1092.CrossRefGoogle Scholar
Mihalas, D. M., Dappen, W., Hummer, D. G., 1988, ApJ, 331, 815.CrossRefGoogle Scholar
Noerdlinger, P. D., 1977, A&A, 57, 407.Google Scholar
Rogers, F. J. & Iglesias, C. A., 1992, ApJ, 401, 360.CrossRefGoogle Scholar
Rogers, F. J. & Iglesias, C. A., 1992, ApJ Supplement., 79, 507.CrossRefGoogle Scholar
Seaton, M. J., Yan, Y., Mihilas, D., Pradhan, A. K., 1994, MNRAS, 266, 805.CrossRefGoogle Scholar
Toutain, T. & Appourchaux, T., 1994, A&A, 289, 649.Google Scholar
Toutain, T., et al., 1997, Sol. Phys. in press.Google Scholar
Tripathy, S. C., Basu, S. & Christensen-Dalsgaard, J., in: Proc. IAU Symp. 181, Sounding solar and stellar interiors, eds. Schmider, F.-X. & Provost, J., Nice Observatory, France, in press.Google Scholar
Turck-Chièze, S. et al., 1997, Sol. Phys., 175, in press.CrossRefGoogle Scholar
Underhill, C. J. & Isaak, G.R., in: Proc. IAU Symp. 181, Sounding solar and stellar interiors, eds. Schmider, F.-X. & Provost, J., Nice Observatory, France, in press.Google Scholar
Vorontsov, S. V., Baturin, V. A., Pamyatnykh, A. A., 1991, Nature, 349, 49.CrossRefGoogle Scholar
Wambsganss, J., 1988, A&A, 205, 125.Google Scholar