No CrossRef data available.
Article contents
Excitation of Dynamo Modes
Published online by Cambridge University Press: 08 February 2017
Abstract
After the very suggestive results of the early days, the theory of the solar dynamo has now entered a period of re-evaluation. It is clear that our initial expectations have been too high. I shall review some of the recent attempts to formulate nonlinear and stochastic mode excitation theoretically. We now have evidence from synoptic observations that the solar dynamo features many periods. Periods both shorter and longer than the fundamental 22 yr cycle have been claimed. The phase stability of any of these periods is uncertain. The phase memory of the 22 yr period may be as short as ~ 10 cycles, but could also be much longer. Linear mean field theories permit only one marginally stable mode; they predict one period with an infinitely long phase memory. Attempts to explain multiperiodicity and finite phase memory effects fall in two categories:
(1). Nonlinear models. These feature a few nonlinearly coupled variables and may exhibit a multiperiodic or chaotic behaviour; (2). If the number of relevant variables is very high, then the dynamo behaves stochastically. It has been argued that this takes the form of stochastic excitation of many dynamo modes (overtones).
- Type
- VI. Generation of Solar Magnetic Fields
- Information
- Copyright
- Copyright © Kluwer 1990