Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T11:42:45.972Z Has data issue: false hasContentIssue false

Gamma-ray bursts: the most powerful cosmic explosions

Published online by Cambridge University Press:  26 May 2016

Lex Kaper*
Affiliation:
Sterrenkundig Instituut Anton Pannekoek, Universiteit van Amsterdam, Kruislaan 403, NL-1098 SJ Amsterdam, Nederland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the detection of gamma-ray burst (GRB) afterglows, the cosmological origin of GRBs has been firmly established. Recent observations suggest that (long-duration) GRBs are due to the collapse of a massive star forming a black hole. Besides theoretical arguments, observational evidence supporting this hypothesis comes from the coincidence of several GRBs with a supernova. Also, all accurately located GRBs are contained in the optical (restframe UV) extent of distant, blue galaxies. Some of these host galaxies show relatively high star-formation rates, which is expected when massive stars and GRBs are physically linked. Alternatively, GRBs can be produced by the merging of a binary neutron star system, such as the Hulse-Taylor binary pulsar. Very likely GRBs trace the massive-star populations in distant galaxies. With their enormous brightness, GRBs are powerful probes of the early universe, providing information on the properties of their host galaxies, the cosmic star-formation history, and potentially the first generations of massive stars.

Type
Part 1. Atmospheres of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Akerlof, C., Balsano, R., Berthelemy, S., et al. 1999, Nature 398, 400.Google Scholar
Andersen, M.I., Hjorth, J., Pedersen, H., et al. 2000, A&A (Letters) 364, L54.Google Scholar
Barziv, O., Kaper, L., van Kerkwijk, M.H., et al. 2001, A&A 377, 925.Google Scholar
Berger, E., Kulkarni, S.R., Frail, D.A. 2001, ApJ 560, 652.CrossRefGoogle Scholar
Bloom, J.S., Kulkarni, S.R., Djorgovski, S.G., et al. 1999, Nature 401, 453.Google Scholar
Bloom, J.S., Kulkarni, S.R., Price, P.A. 2002, ApJ (Letters) 572, L45.Google Scholar
Cavallo, G., Rees, M.J. 1978, MNRAS 183, 359.Google Scholar
Charles, P.A. 1999, in: Abramowicz, M.A., Björnsson, G. & Pringle, J.E. (eds.), Theory of Black Hole Accretion Disks (Cambridge: CUP), p. 1.Google Scholar
Costa, E., Frontera, F., Heise, J., et al. 1997, Nature 387, 783.Google Scholar
Covino, S., Lazzati, D., Ghisellini, G., et al. 1999, A&A (Letters) 348, L1.Google Scholar
Eichler, D., Livio, M., Piran, T., et al. 1989, Nature 340, 126.Google Scholar
Fishman, G.J., Meegan, C.A. 1995, Ann. Review Astron. Astrophys. 33, 415.CrossRefGoogle Scholar
Frail, D.A., Kulkarni, S.R., Sari, R., et al. 2001, ApJ (Letters) 562, L55.Google Scholar
Galama, T.J., Vreeswijk, P.M., van Paradijs, J., et al. 1998, Nature 395, 670.Google Scholar
Galama, T.J., Briggs, M.S., Wijers, R.A.M.J., et al. 1999, Nature 398, 394.Google Scholar
Greiner, J., et al. 2002, A&A submitted.Google Scholar
Israelian, G., Rebolo, R., Basri, G., et al. 1999, Nature 401, 142.Google Scholar
Iwamoto, K., Mazzali, P.A., Nomoto, K., et al. 1998, Nature 395, 672.CrossRefGoogle Scholar
Klebesadel, R.W., Strong, I.B., Olson, R.A. 1973, ApJ (Letters) 182, L85.Google Scholar
Kouveliotou, C., Meegan, C.A., Fishman, G.J., et al. 1993, ApJ (Letters) 413, L101.CrossRefGoogle Scholar
Lattimer, J.M., Schramm, D.N. 1974, ApJ (Letters) 192, L145.Google Scholar
MacFadyen, A.I., Woosley, S.E. 1999, ApJ 524, 262.Google Scholar
Meegan, C.A., Fishman, G.J., Wilson, R.B., et al. 1992, Nature 355, 143.Google Scholar
Metzger, M.R., Djorgovski, S.G., Kulkarni, S.R., et al. 1997, Nature 387, 878.CrossRefGoogle Scholar
Paciesas, W.S., Meegan, C.A., Pendleton, G.N., et al. 1999, ApJS 122, 465.Google Scholar
Paczynski, B. 1998, ApJ (Letters) 454, L45.CrossRefGoogle Scholar
Piran, T. 1999, Phys. Rep. 314, 575.Google Scholar
Piro, L., Garmire, G., Garcia, M., et al. 2000, Science 290, 955.Google Scholar
Rees, M.J. 1964, , .Google Scholar
Rees, M.J., Mészáros, P. 1992, MNRAS (Letters) 258, L41.Google Scholar
Reeves, J.N., Watson, D., Osborne, J.P., et al. 2002, Nature 416, 512.Google Scholar
Rol, E., Wijers, R.A.M.J., Vreeswijk, P.M., et al. 2000, ApJ 544, 707.Google Scholar
Srinivasan, G. 2002, The A&A Review 11, 67.Google Scholar
van Paradijs, J., Groot, P.J., Galama, T., et al. 1997, Nature 386, 686.Google Scholar
van Paradijs, J., Kouveliotou, C., Wijers, R.A.M.J. 2000, Ann. Review Astron. Astrophys. 38, 379.CrossRefGoogle Scholar
Vreeswijk, P.M., Fruchter, A.S., Kaper, L., et al. 2001, ApJ 546, 672.CrossRefGoogle Scholar
Vreeswijk, P.M. 2002, Gamma-ray Burst Afterglows and the Nature of their Host Galaxies, , , Nederland.Google Scholar
Woosley, S.E. 1993, ApJ 405, 273.Google Scholar