Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T06:31:40.807Z Has data issue: false hasContentIssue false

Key Problems of Flat Objects Dynamo Theory and Ways of Their Solution

Published online by Cambridge University Press:  19 July 2016

F. Krause
Affiliation:
Sternwarte Babelsberg Academy of Science Potsdam 1591 GDR
R. Meinel
Affiliation:
Sternwarte Babelsberg Academy of Science Potsdam 1591 GDR
D. Elstner
Affiliation:
Sternwarte Babelsberg Academy of Science Potsdam 1591 GDR
G. Rüdiger
Affiliation:
Sternwarte Babelsberg Academy of Science Potsdam 1591 GDR

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present status of galactic dynamo theory is discussed. A new concept which allows the determination of marginal dynamo numbers for axisymmetric as well as non-axisymmetric large-scale magnetic field modes in axisymmetric disks is applied to a simple galaxy model. The results obtained so far show that a preference of non-axisymmetric fields can only be expected if the α-effect is highly anisotropic and the differential rotation is not too strong. Mostly axisymmetric-spiral fields have to be expected.

Type
4. Magnetohydrodynamics of Galactic Magnetic Fields
Copyright
Copyright © Kluwer 1990 

References

Baryshnikova, Y., Ruzmaikin, A.A., Sokoloff, D.D., and Shukurov, A. (1987) ‘Generation of large-scale magnetic fields in spiral galaxies’, Astron. Astrophys. 177, 2741.Google Scholar
Brandenburg, A., Krause, F., Meinel, R., Moss, D., and Tuominen, I. (1989) ‘The stability of nonlinear dynamos and the limited role of kinematic growth rates’, Astron. Astrophys. 213, 411422.Google Scholar
Elstner, D., Meinel, R., and Rüdiger, G. (1990) ‘Galactic dynamo models without sharp boundaries’, Geophys. Astrophys. Fluid Dyn. (in press).CrossRefGoogle Scholar
Fujimoto, M. (1987) ‘Bisymmetric spiral magnetic fields in spiral galaxies’, In: Interstellar Magnetic Fields, eds. Beck, R. and Gräve, R., 2329, Springer-Verlag Berlin, Heidelberg.CrossRefGoogle Scholar
Henning, T. (1990) Fundamentals of cosmic physics (in preparation).Google Scholar
Krause, F. (1990) ‘How well developed is dynamo theory of flat objects?’, Geophys. Astrophys. Fluid Dyn. (in press).CrossRefGoogle Scholar
Krause, F., and Meinel, R. (1988a) ‘Stability of simple nonlinear α2-dynamos’, Geophys, Astrophys. Fluid Dyn. 43, 95117.CrossRefGoogle Scholar
Krause, F., and Meinel, R. (1988b) ‘A scenario for dynamo generated magnetic fields’, In: Magnetic Stars, eds. Glagolevsky, Yu. V. and Kopylov, J.M., Leningrad “Nauka”.Google Scholar
Krause, F., and Rädler, K.-H. (1980) Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademie-Verlag Berlin.Google Scholar
Krause, F., and Steenbeck, M. (1967) ‘Untersuchung der Dynamowirkung einer nichtspiegelsymmetrischen Turbulenz an einfachen Modellen’, Z. Naturforsch. 22a, 671675.CrossRefGoogle Scholar
Kormendy, J., and Norman, C.A. (1979) ‘Observational constraints on driving mechanisms for spiral density waves’, Astrophys. J. 233, 539552.CrossRefGoogle Scholar
Kulsrud, R. (1989) ‘The case for a primordial galactic field’, In. Plasmaastrophysics, eds. Guyenne, T.D. and Hunt, J.J., ESA Publications Division, ESTEC, Noordwijk. Parker, E.N. (1971) ‘The generation of magnetic fields in astrophysical bodies. II. The galactic field’, Astrophys. J. 163, 255-273.Google Scholar
Rädler, K.-H., and Bräuer, (1987) ‘On the oscillatory behaviour of kinematic mean-field dynamos’, Astron. Nachr. 308, 101109.CrossRefGoogle Scholar
Rädler, K.-H., and Wiedemann, E. (1989) ‘Numerical experiments with a simple nonlinear mean-field dynamo model’, Geophys. Astrophys. Fluid Dyn. (in press).CrossRefGoogle Scholar
Ruzmaikin, A.A., Shukurov, A.M., and Sokoloff, D.D. (1988) Magnetic Fields of Galaxies, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Soward, A.M. (1978) ‘A thin disc model of the galactic dynamo’, Astron. Nachr. 299, 2533.CrossRefGoogle Scholar
Stix, M. (1975) ‘The galactic dynamo’, Astron. Astrophys. 42, 8589.Google Scholar
White, M.P. (1978) ‘Numerical models of the galactic dynamo’, Astron. Nachr. 299, 209216.CrossRefGoogle Scholar