Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T16:34:00.557Z Has data issue: false hasContentIssue false

On the Calculation of Low Frequency Oscillations of the Earth's Core

Published online by Cambridge University Press:  19 July 2016

S.V. Dyakonov*
Affiliation:
O. Yu. Shmidt Institute of Earth Physics Bolshaya Gruzinskaya 10 123810 Moscow D-242 USSR

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem of calculation of low frequency oscillations of an ideal rotating compressible fluid is investigated. An original method of solving such a problem, based on using characteristic functions of the Poincaré operator is proposed. An efficient scheme of calculating the characteristic numbers and functions of the Poincaré operator is worked out. The high speed of convergence of the method is shown. An essential influence of compressibility on the theoretical nutation amplitude is found.

Type
Part 3: Concepts, Definitions, Models
Copyright
Copyright © Kluwer 1990 

References

1. Smith, M.L. 1974, “The scalar equations of infinitesimal elastic-gravitational motion for a rotating slightly-elliptical Earth”, Geophys. J. Royal Astron. Soc. 37, 491526.Google Scholar
2. Crossly, D.J., Rochester, M.G. 1980, “Simple core undertones”, Geophys. J. Royal Astron. Soc. 60, 129161.Google Scholar
3. Wahr, J.M. 1981, The forced nutation of an elliptical, rotating elastic and oceanless Earth, Geophys. J. Royal Astron. Soc. 64, 705727.Google Scholar