Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-17T22:26:31.852Z Has data issue: false hasContentIssue false

Orbits

Published online by Cambridge University Press:  04 August 2017

James Binney*
Affiliation:
Department of Theoretical Physics, Keble Road, Oxford OX1 3NP, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Orbits that respect at least three isolating integrals of motion have very special structures in phase space. The main characteristics of this structure are reviewed, and the concrete examples that are provided by orbits in Stäckel potentials, are discussed. Many orbits in general potentials admit three approximate isolating integrals and closely resemble orbits in Stäckel potentials. If the potential is that of an elliptical galaxy with negligible figure rotation, the overall orbital stucture of the potential differs from that of a Stäckel potential only by the presence of a few unimportant families of resonant orbits. However, this elegant picture is shattered by the introduction of non-negligible figure rotation: though substantial regions of phase space may still be occupied by orbits that individually resemble orbits in Stäckel potentials, the overall orbital structure is radically changed by figure rotation, and in a rotating potential significant portions of phase space are given over to chaotic orbits, quite unlike orbits in Stäckel potentials.

Type
Invited Reviews
Copyright
Copyright © Reidel 1987 

References

REFERENCES

Arnold, V. I. 1978 Mathematical Methods of Classical Mechanics, (New York: Springer).CrossRefGoogle Scholar
Athanassoula, E., Bienaymé, O., Martinet, L. & Pfenniger, D. 1983. Astron. Astrophys., 127, 349.Google Scholar
Binney, J. J. 1981. Mon. Not. Roy. Astron. Soc., 196, 455.CrossRefGoogle Scholar
Binney, J. J. 1982. Mon. Not. Roy. Astron. Soc., 201, 1.Google Scholar
Binney, J. J. & Spergel, D. N. 1984. Mon. Not. Roy. Astron. Soc., 206, 159.Google Scholar
Binney, J. J., May, A. & Ostriker, J. P. 1986 Preprint, Princeton University.Google Scholar
Contopoulos, G. 1963. Astrophys. J., 138, 1297.Google Scholar
Contopoulos, G. & Mertzanides, C. 1977. Astron. Astrophys., 61, 477.Google Scholar
de Zeeuw, P. T. 1985. Mon. Not. Roy. Astron. Soc., 216, 273.CrossRefGoogle Scholar
Gerhard, O. E. 1985. Astron. Astrophys., 151, 279.Google Scholar
Gerhard, O. E. & Binney, J. J. 1985. Mon. Not. Roy. Astron. Soc., 216, 467.CrossRefGoogle Scholar
Goodman, J. & Schwarzschild, M. 1981. Astrophys. J., 245, 1087.Google Scholar
Gustavson, F. G. 1966. Astron. J., 71, 670.Google Scholar
Kent, S. 1983 Preprint, Center for Astrophysics.Google Scholar
Magnenat, P. 1982. Celest. Mech., 28, 319.CrossRefGoogle Scholar
Margenau, H. & Murphy, G. M. 1956 Mathematics of Physics and Chemistry, (New York: Van Nostrand), §2.17.Google Scholar
Merritt, D. 1980. Astrophys. J. Suppl., 43, 435.Google Scholar
Mulder, W. A. & Hooimeyer, J. R. A. 1983. Astron. Astrophys., 134, 158.Google Scholar
Petrou, M. 1984. Mon. Not. Roy. Astron. Soc., 211, 283.Google Scholar
Pfenniger, D. 1984. Astron. Astrophys., 134, 373.Google Scholar
Pfenniger, D. 1985. Astron. Astrophys., 150, 97.Google Scholar
Ratcliff, S. J., Chang, K. M. & Schwarzschild, M. 1984. Astrophys. J., 279, 610.Google Scholar
Richstone, D. O. 1980. Astrophys. J., 238, 103.Google Scholar
Richstone, D. O. 1982. Astrophys. J., 252, 496.Google Scholar
Richstone, D. O. 1984. Astrophys. J., 281, 100.Google Scholar
Schwarzschild, M. 1979. Astrophys. J., 232, 236.CrossRefGoogle Scholar
Schwarzschild, M. 1982. Astrophys. J., 263, 599.Google Scholar
Teuben, P. & Sanders, R. 1985. Mon. Not. Roy. Astron. Soc., 212, 257.Google Scholar
Vietri, M. 1985. PhD thesis, Princeton University.Google Scholar