Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T16:54:09.467Z Has data issue: false hasContentIssue false

Radio Observations of the Marano Field: Sub-Millijansky Source Counts and Spectral Index Studies

Published online by Cambridge University Press:  25 May 2016

C. Gruppioni
Affiliation:
Istituto di Radioastronomia del CNR, via Gobetti 101, I–40129, Bologna, Italy Osservatorio Astronomico di Bologna, via Zamboni 33, I–40126, Bologna, Italy
P. Parma
Affiliation:
Istituto di Radioastronomia del CNR, via Gobetti 101, I–40129, Bologna, Italy Osservatorio Astronomico di Bologna, via Zamboni 33, I–40126, Bologna, Italy
H.R. De Ruiter
Affiliation:
Istituto di Radioastronomia del CNR, via Gobetti 101, I–40129, Bologna, Italy Osservatorio Astronomico di Bologna, via Zamboni 33, I–40126, Bologna, Italy
G. Zamorani
Affiliation:
Istituto di Radioastronomia del CNR, via Gobetti 101, I–40129, Bologna, Italy Osservatorio Astronomico di Bologna, via Zamboni 33, I–40126, Bologna, Italy

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Marano Field (centered at α(2000)=03h 15m 09s δ(2000)= −55° 13′ 57″) is a deep ROSAT field (flux limit ≃ 4 × 10–15 erg cm–2 s–1), which has been entirely covered by ESO 3.6 m plates and in the inner part by deep CCD exposures. In order to follow up these data in other wavelength regions, deep radio observations of this field have been carried out with the Australia Telescope Compact Array (ATCA) at 1.370 and 2.378 GHz. The minimum reached rms noise value is ≃42 μJy at both frequencies. 80 and 45 sources form complete samples above 5.5 σlocal level at 1.370 and 2.378 GHz respectively, in a square area of ≃0.34 sq. deg. Almost all of the sources detected at 2.378 GHz have been detected also at 1.370 GHz.

Type
Surveys of Radio Sources
Copyright
Copyright © Kluwer 1996 

References

Condon, J.J. and Mitchell, K.J. (1984), AJ , Vol. no. 89, p. 610.Google Scholar
Hammer, F., Crampton, D., Lilly, S.J., Le Fèvre, O. and Kenet, T. (1995), MNRAS , Vol. no. 276, p.1085.Google Scholar
Wall, J.V. and Cooke, D.J. (1975), MNRAS , Vol. no. 171, p. 9.Google Scholar
Wall, J.V. and Peacock, J.A. (1985), MNRAS , Vol. no. 216, p. 173.Google Scholar
Windhorst, R.A., Miley, G.K., Owen, F.N., Kron, R.G. and Koo, D.C. (1985), Ap.J. , Vol. no. 289, p. 494.Google Scholar
Windhorst, R.A., Fomalont, E.B., Partridge, R.B. and Lowenthal, J.D. (1993), Ap J. , Vol. no. 405, p. 498.Google Scholar
Windhorst, R.A., Fomalont, E.B., Kellermann, K.I., Partridge, R.B., Richards, E., Franklin, B.E., Pascarelle, S.M. and Griffiths, R.E. (1995), Nature , Vol. no. 375, p. 471.Google Scholar