Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T23:31:55.534Z Has data issue: false hasContentIssue false

Self-Ordering of Photospheric Magnetic Fields

Published online by Cambridge University Press:  08 February 2017

J. K. Lawrence*
Affiliation:
San Fernando Observatory Department of Physics and Astronomy California State University, Northridge Northridge, California 91330, U. S. A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We model the evolution of photospheric field elements by treating them as mean field structures undergoing a nonlinear self-interaction mediated by much smaller-scale, convectively driven plasma turbulence. Distributed fields can gather into discrete, strong elements of a minimum permitted scale. Also studied are the transport of flux from dissolving elements and to growing elements via weak intermediate fields and the cancellation of adjacent emements of opposite polarity.

Type
VI. Generation of Solar Magnetic Fields
Copyright
Copyright © Kluwer 1990 

References

Beckers, J. M. (1976) Astrophys. J. 203, 739.Google Scholar
Drummond, I. T. and Horgan, R. R. (1986) J. Fluid Mech. 163, 425.Google Scholar
Knobloch, E. (1978) Astrophys. J. 225, 1050.Google Scholar
Kraichnan, R. H. (1976) J. Fluid Mech. 77, 753.CrossRefGoogle Scholar
Krause, F. and Rädler, K. -H. (1980) Mean Field Magnetohydrodynamics and Dynamo Theory, Pergamon, London; Akademie-Verlag, Berlin.Google Scholar
Martin, S. F., Livi, S. H. B. and Wang, J. (1985) Aust. J. Phys. 38, 929.Google Scholar
Moffatt, H. K. (1983) Rep. Prog. Phys. 46, 621.Google Scholar
Nicolis, G. and Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems, Wiley, New York.Google Scholar
Parker, E. N. (1979) Cosmical Magnetic Fields, Clarendon Press, Oxford.Google Scholar
Peckover, R. S. and Weiss, N. O. (1978) Mon. Not. R. Astron. Soc. 182, 189.Google Scholar
Rädler, K. -H. (1968) Z. f. Naturforsch. 23a, 1851.Google Scholar
Simon, G. W. and Wilson, P. R. (1985) Astrophys. J. 295, 241.Google Scholar
Stenflo, J. O. (1988) Solar Phys. 114, 1.Google Scholar
Topka, K. P., Tarbell, T. D. and Title, A. M. (1986) Astrophys. J. 306, 304.Google Scholar
Vainshtein, S. I. and Zel'dovich, Ya. B. (1972) Usp. Fiz. Nauk. 106, 431; (1972) Sov. Phys. (Uspekhi) 15, 159.Google Scholar
Zel'dovich, Ya. B. (1956) Zh. Eksp. Teor. Fiz. 31, 154; (1957) Sov. Phys. (JETP) 4, 460.Google Scholar
Zwaan, C. (1987) Ann. Rev. Astron. Astrophys. 25, 83.Google Scholar