Published online by Cambridge University Press: 03 August 2017
The Orion-KL nebula is the closest (450pc) site of high-mass star formation and exhibits powerful outflows associated with protostars. It is also one of only three known star forming regions to exhibit SiO maser emission. Emission in three SiO maser transitions (v=1 J=1 → 0, v=1 J=2 → 1, and v=2 J=1 → 0) imaged by VLBI exhibits an “X” morphology suggesting that the Orion masers form along the outlines of two opposing conical outflows to the NW and SE. At the center of this “X”, VLA observations find emission from an HII region presumably associated with a young star whose wind drives the outflow. The SiO masers probably form along the interface between the stellar wind and surrounding parent cloud. We find that SiO maser emission from different transitions preferentially occurs at different radii from the central star implying that the masers are tracers for physical conditions in the wind-cloud interaction region. On the smallest scales, some individual maser features in each transition overlap both spatially and in velocity providing strong evidence that more than one transition can mase within the same volume of gas.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.