Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T17:30:23.346Z Has data issue: false hasContentIssue false

Titan's Organic Chemistry

Published online by Cambridge University Press:  04 August 2017

C. Sagan
Affiliation:
Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853 U.S.A.
W. R. Thompson
Affiliation:
Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853 U.S.A.
B. N. Khare
Affiliation:
Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853 U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of simulated Titanian atmosphere are consistent with measured properties of Titan from ultraviolet to microwave frequencies, and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on Earth. At least 100 m and possibly kms thickness of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

Type
Section III. Planetary, Interplanetary and Interstellar Organic Matter
Copyright
Copyright © Reidel 1985 

References

Bell, J.F., Cruikshank, D.P., and Gaffey, M.J. (1983), The nature of the Iapetus dark material, Bull. Amer. Astron. Soc. 15, 856.Google Scholar
Cruikshank, D.P., Bell, J.F., Gaffey, M.J., Brown, R.H., Howell, R., Beerman, C., and Ragusted, M. (1983). The dark side of Iapetus. Icarus 53, 90104.CrossRefGoogle Scholar
Flaser, F.M. (1983). Oceans on Titan? Science 221, 5557.Google Scholar
Harris, D.L. (1961). Photometry and colorimetry of planets and satellites. In Planets and Satellites (Kuiper, G. P. and Middlehurst, B. M., eds.) University of Chicago Press, Chicago.Google Scholar
Khare, B.N. and Sagan, C. (1973). Red clouds in reducing atmospheres. Icarus 20, 311321.CrossRefGoogle Scholar
Khare, B.N., Sagan, C., Shrader, S., Arakawa, E.T. (1982). Molecular analysis of tholins produced under simulated Titan conditions. Bull. Amer. Astron. Soc. 14, 714.Google Scholar
Khare, B.N., Sagan, C., Arakawa, E.T., Ogino, H., Willingham, T.O. and Nagy, B. (1983). Amino acid analysis of Titan tholins. Bull. Amer. Astron. Soc. 15, 843.Google Scholar
Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A., and Williams, M.W. (1984). Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies. Icarus 60, 127137.CrossRefGoogle Scholar
Ligthart, F.A.S., Trappeniers, N.J., Prins, K.O. (1979). Nuclear magnetic resonance in solid ethylene at high pressure. 1. The phase diagram of solid ethylene at high pressure. Physica B+C 97, 172186.CrossRefGoogle Scholar
Lindal, F.G., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshleman, V.R., and Tyler, G.L. (1983). The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements. Icarus 53, 348363.Google Scholar
Lunine, J.I., Stevenson, D.J., and Yung, Y.L. (1983). Ethane ocean on Titan. Science 222, 12291230.Google Scholar
Nelson, R.M. and Hapke, B.W. (1978). Spectral reflectivities of the Galilean satellites and Titan, 0.32 to 0.86 micrometers. Icarus 36, 304329.Google Scholar
Podolak, M., Bar-Nun, A., Noy, N., and Giver, L.P. (1984). Inhomogeneous models of Titan's aerosol distribution. Icarus 57, 7282.CrossRefGoogle Scholar
Ramaprasad, K.R., Caldwell, J., McClure, D.S. (1978). The vibrational overtone spectrum of liquid methane in the visible and near infrared: Applications to planetary studies. Icarus 35, 400409.CrossRefGoogle Scholar
Sagan, C. (1971). The solar system beyond Mars: An exobiological survey. Space Sci. Rev. 11, 73112.Google Scholar
Sagan, C. (1973). The greenhouse of Titan. Icarus 18, 649656.Google Scholar
Sagan, C. (1974). Organic chemistry in the atmosphere. In The Atmosphere of Titan (Hunten, D. M., ed.), NASA Special Publication SP-340. NASA, Washington, D.C. Google Scholar
Sagan, C. and Dermott, S.F. (1982). The tide in the seas of Titan. Nature 300, 731733.CrossRefGoogle Scholar
Sagan, C., Thompson, W.R., and Khare, B.N. (1983). Reflection spectra of model Titan atmospheres and aerosols. Bull. Amer. Astron. Soc. 15, 843.Google Scholar
Sagan, C., and Thompson, W.R. (1984). Production and condensation of organic gases in the atmosphere of Titan. Icarus 59, 133161.Google Scholar
Sagan, C., Thompson, W.R., Khare, B.N., and Arakawa, E.T. (1984). Titan: Multiple light scattering by organic tholins and condensates. Bull. Amer. Astron. Soc. 16, 665.Google Scholar
Samuelson, R.E., Hanel, R.A., Kunde, V.G., and Maguire, W.C. (1981). Mean molecular weight and hydrogen abundance of Titan's atmosphere. Nature 292, 688693.Google Scholar
Smith, B.A., Soderblom, L., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S.A., Hansen, C.J., Johnson, T.V., Mitchell, J.L., Terrile, R.J., Carr, M., Cook, A. F. II, Cuzzi, J., Pollack, J.B., Danielson, G.E., Ingersoll, A., Davies, M.E., Hunt, G.E., Masursky, H., Shoremaker, E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., Suomi, V.E. (1981). Encounter with Saturn: Voyager 1 imaging science results. Science 212, 163190.CrossRefGoogle ScholarPubMed
Smith, G.R., Strobel, D.F., Broadfoot, A.L., Sandel, B.R., Shemansky, D.E., and Holberg, J.B. (1982). Titan's upper atmosphere: Composition and temperature from the EUV solar occultation results. J. Geophys. Res. 87, 13511360.Google Scholar
Squyres, S.W. and Sagan, C., Albedo asymmetry of Iapetus, Nature 303, 782785.Google Scholar
Strobel, D.F. (1982). Chemistry and evolution of Titan's atmosphere. Planet. Space Sci. 30, 839848.CrossRefGoogle Scholar
Thompson, W.R. and Sagan, C. (1984). Titan: Far-infrared and microwave remote sensing of methane clouds and organic haze. Icarus 60, 236259.CrossRefGoogle Scholar