Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-12T09:50:20.576Z Has data issue: false hasContentIssue false

X-ray Emission from Brown Dwarfs

Published online by Cambridge University Press:  26 May 2016

Thomas Preibisch*
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the last few years, X-ray emission has been detected from numerous brown dwarfs. Most of the X-ray detected brown dwarfs are very young objects with ages of at most 107 years, and all are still relatively warm, with late M spectral types. Their typical fractional X-ray luminosities are (LX/Lbol) ∼ 10—4 — 10—3, i.e. very similar to the values observed for active very-low mass stars. Their X-ray lightcurves show low-level variability, but in most cases no large flares; this implies that the young brown dwarfs are able to produce quiescent X-ray emission, not only occasional flares. An analysis of the Chandra X-ray spectra of several brown dwarfs yields surprisingly low plasma temperatures between 3 MK and 10 MK for some of the M8-9 dwarfs and indicates a decline in plasma temperature with decreasing effective temperature (or increasing age). The lack of X-ray detections for dwarfs cooler than spectral type M9 is consistent with the strong drop of activity observed in Hα at spectral types around M9. The observed X-ray emission from the young brown dwarfs with late M spectral type can be understood as a consequence of the fact that these objects are still warm enough to maintain partially ionized atmospheres which are capable of sustaining electrical currents. In the cooler, essentially neutral atmospheres of the older L and T dwarfs such currents are probably shut off, preventing the buildup of magnetic free energy and the support for magnetically heated chromospheres and coronae.

Type
Part 6: Low Mass Stellar Magnetic Activity and Evolution
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P.H., 1998, A&A 337, 403.Google Scholar
Baraffe, I., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H. 2003, A&A 402, 701.Google Scholar
Basri, G., 2000, ARAA 38, 485.CrossRefGoogle Scholar
Berger, E., Ball, S., Becker, K.M., et al., 2001, Nat 410, 338.Google Scholar
Burgasser, A.J., Kirkpatrick, D., Reid, I.N., et al., 2000, AJ 120, 473.Google Scholar
Chabrier, G. 2003, PASP 115, 763.CrossRefGoogle Scholar
Favata, F., Micela, G., 2003, Space Science Reviews, 108, 577.Google Scholar
Feigelson, E.D., & Montmerle, T., 1999, ARA&A 37, 363.Google Scholar
Feigelson, E.D., Broos, P., Gaffney, J.A., et al., 2002, ApJ 574, 258.CrossRefGoogle Scholar
Feigelson, E.D., Gaffney, J.A., Gramire, G., et al., 2003, ApJ 584, 911.CrossRefGoogle Scholar
Flaccomio, E., Damiani, F., Micela, G., et al., 2003, ApJ 582, 398.CrossRefGoogle Scholar
Fleming, T.A., Schmitt, J.H.M.M., & Giampapa, M.S., 1995, ApJ 450, 401.Google Scholar
Fleming, T.A., Giampapa, M.S., Schmitt, J.H.M.M., Bookbinder, J.A., 1993, ApJ 410, 387.Google Scholar
Fleming, T.A., Giampapa, M.S., Schmitt, J.H.M.M., 2000, ApJ 533, 372.Google Scholar
Fleming, T.A., Giampapa, M.S., Garza, D., 2003, ApJ 594, 982.Google Scholar
Giampapa, M.S., Rosner, R., Kashyap, V., Fleming, T.A., Schmitt, J.H.M.M., & Bookbinder, J.A., 1996, ApJ 463, 707.CrossRefGoogle Scholar
Gizis, J.E., Monet, D.G., Reid, I.N., et al., 2000, AJ 120, 1085.Google Scholar
Hall, P.B., 2002, ApJ 564, L89.Google Scholar
Hawley, S.L., Gizis, J.E., Reid, I.N., 1996, AJ 112, 2799.CrossRefGoogle Scholar
Imanishi, K., Tsujimoto, M., Koyama, K., 2001, ApJ 563, 361.Google Scholar
Küker, M., & Rüdiger, G., 1999, A&A 346, 922.Google Scholar
Liebert, J., Kirkpatrick, D., Cruz, K.L., et al., 2003, AJ 125, 343.Google Scholar
Luhman, K.L., 1999, ApJ 525, 466.Google Scholar
Martin, E.L., Bouy, H., 2002, NewAstr 7, 595.Google Scholar
Mohanty, S., Basri, G., Shu, F., Allard, F., Chabrier, G. 2002, ApJ 571, 469.Google Scholar
Najita, J.R., Tiede, G.P., & Carr, J.S., 2000, ApJ 541, 977.Google Scholar
Neuhäuser, R., 1997, Science 267, 1363.CrossRefGoogle Scholar
Neuhäuser, R., Comeron, F., 1998, Science 282, 83.CrossRefGoogle Scholar
Neuhäuser, R., Briceno, C., Comeron, F., 1999, A&A 343, 883.Google Scholar
Preibisch, Th., 1997, A&A 320, 525.Google Scholar
Preibisch, Th., Zinnecker, H., 2001, AJ 122, 866.CrossRefGoogle Scholar
Preibisch, Th., & Zinnecker, H. 2002, AJ 123, 1613.Google Scholar
Preibisch, Th., Zinnecker, H., Herbig, G.H. 1996, A&A 310, 456.Google Scholar
Rutledge, R.E., Basri, G., Martin, E.L., & Bildsten, L., 2000, ApJ 538, L141.CrossRefGoogle Scholar
Schmitt, J.H.M.M., Liefke, C., 2002, A&A 382, L9.Google Scholar
Tsuboi, Y., Maeda, Y., Feigelson, E.D., et al. 2003, ApJ 587, L51.CrossRefGoogle Scholar