Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T03:38:36.912Z Has data issue: false hasContentIssue false

Correlations of plasma parameters and properties of magnetron sputtered TiN films

Published online by Cambridge University Press:  03 September 2012

N. Kumari
Affiliation:
Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835215, India
P.S. Das*
Affiliation:
Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835215, India
N.K. Joshi
Affiliation:
Faculty of Engineering & Technology, MITS University, Lakshmangarh 332311, Rajasthan, India
P.K. Barhai
Affiliation:
Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835215, India
*
Get access

Abstract

Titanium nitride thin films have been grown on Si substrates by using DC reactive magnetron sputtering from a titanium target at different DC power (100–400 W). The different plasma parameters such as plasma potential, floating potential, electron temperature, electron density and ion density have been measured using a Langmuir probe. The electron energy distribution function (EEDF) has been evaluated from the second derivative of I-V plot of the Langmuir probe data and has shown to be bi-Maxwellian. The correlations between measured plasma parameters and the properties of TiN films deposited at the same operating conditions have been studied. It has been observed that the hardness decreases and the resistivity increases in films deposited at higher DC power. This is attributed to the growth of Ti2N phase at higher powers. The mechanical properties of the films have also been studied.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ramalingam, S., Wear 118, 335 (1984)
Bergman, E., Kanfmann, H., Schmid, R., Vogel, J., Surf. Coat. Technol. 42, 237 (1990)CrossRef
Tao, M., Udeshi, D., Agarwal, S., Maldonado, E., Kirk, W.P., Solid State Electron. 48, 335 (2004)CrossRef
Smith, G.B., Ben-David, A., Swift, P.D., Renew. Energy 22, 79 (2001)CrossRef
Vaz, F., Cerqueira, P., Rebouta, L., Nascimento, S.M.C., Alves, E., Goudeau, Ph., Riviere, J.P., Pischow, K., de Rijk, J., Thin Solid Films 447–448, 449 (2004)CrossRef
Hippler, R., Pfau, S., Schmidt, M., Schoenbach, K.H. (eds.), Low Temperature Plasma Physics, Fundamental Aspects, Application (Wiley-VCH, Berlin, 2001)Google Scholar
Hippler, R., Steffen, H., Quaas, M., Rowf, T., Tun, T.M., Wulff, H., in Advances in Solid State Physics, edited by Kramer, B., vol. 44 (Springer-Verlag, Heidelberg, 2004), p. 299Google Scholar
Spatenka, P., Leipner, I., Vicek, J., Musil, J., Plasma Source. Sci. Technol. 6, 46 (1997)CrossRef
Roth, J., Industrial Plasma Engineering, vol. 1 (Bristol Institute of Physics Publishing, Bristol, UK, 1995)CrossRefGoogle Scholar
Thronton, J.A., Thin solid films 80, 1 (1980)CrossRef
Thronton, J.A., Penfold, A.S., in Thin Film Processes, edited by Vossen, J.L., Kern, W. (Academic Press, New York, 1978), p. 75CrossRefGoogle Scholar
Kim, T.S., Park, S.S., Lee, B.T., Mater. Lett. 59, 3929 (2005)CrossRef
Wei, C.H., Lin, J.F., Jiang, T.-H., Ai, C.-F., Thin Solid Films 103, 381 (2001)
Huang, J.-H., Ma, C.-H., Chen, H., Surf. Coat. Technol. 200, 5937 (2006)CrossRef
Kiuchi, M., Chayahara, A., Tarutani, M., Takai, Y., Shimizu, R., Mater. Chem. Phys. 54, 330 (1998)CrossRef
Su, Y.L., Yao, S.H., Wu, C.T., Wear 199, 132 (1996)CrossRef
Subramanian, B., Muraleedharan, C.V., Ananthakumar, R., Jayachandran, M., Surf. Coat. Technol. 205, 5014 (2011)CrossRef
Machunze, R., Janssen, G.C.A.M., Surf. Coat. Technol. 203, 550 (2008)CrossRef
Hultman, L., Vacuum 57, 1 (2000)CrossRef
Kiran, M.S.R.N., Ghanashyam Krishna, M., Padmanabhan, K.A., Solid State Commun. 151, 561 (2011)CrossRef
Gustavsson, L.-E., Baránková, H., Bárdos, L., Surf. Coat. Technol. 201, 1464 (2006)CrossRef
Guu, Y.Y., Lin, J.F., Wear 194, 22 (1996)CrossRef
Merlino, R.L., Am. J. Phys. 75, 1078 (2007)CrossRef
Singh, S.B., Chand, N., Patil, D.S., Vacuum 83, 372 (2009)CrossRef
Massissel, L.I., Glang, R., Handbook of Thin Solid Films Technology (McGraw-Hill, New York, 1970)Google Scholar
Sinha, M.K., Mukherjee, S.K., Pathak, B., Paul, R.K., Barhai, P.K., Thin Solid Films 515, 1753 (2006)CrossRef
Uhlir, A. Jr., Bell Syst. Tech. J. 34, 105 (1955)CrossRef
Nisha, M., Saji, K.J., Ajimsha, R.S., Joshy, N.V., Jayaraj, M.K., J. Appl. Phys. 99, 033304 (2006)CrossRef
Borah, S.M., Pal, A.R., Bailung, H., Chutia, J., Chin. Phys. B 20, 014701 (2011)CrossRef
Chou, W.J., Yu, G.P., Huang, J.H., Surf. Coat. Technol. 149, 7 (2002)CrossRef
Kanamori, S., Thin Solid Films 136, 195 (1986)CrossRef
Elakshar, F.F., Hassouba, M.A., Garamoon, A.A., Fizika A (Zagreb) 9, 177 (2000)