Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T10:44:35.710Z Has data issue: false hasContentIssue false

Distribution and properties of oxide precipitates in annealed nitrogen doped 300 mm Si wafers

Published online by Cambridge University Press:  15 July 2004

V. D. Akhmetov*
Affiliation:
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany IHP/BTU Joint Lab, Universitätsplatz 3-4, 03044 Cottbus, Germany
H. Richter
Affiliation:
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany IHP/BTU Joint Lab, Universitätsplatz 3-4, 03044 Cottbus, Germany
W. Seifert
Affiliation:
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany IHP/BTU Joint Lab, Universitätsplatz 3-4, 03044 Cottbus, Germany
O. Lysytskiy
Affiliation:
IHP/BTU Joint Lab, Universitätsplatz 3-4, 03044 Cottbus, Germany BTU, Universitätsplatz 3-4, 03044 Cottbus, Germany
R. Wahlich
Affiliation:
Wacker Siltronic AG (Present name: Siltronic AG) , PO Box 1140, 84479 Burghausen, Germany
T. Müller
Affiliation:
Wacker Siltronic AG (Present name: Siltronic AG) , PO Box 1140, 84479 Burghausen, Germany
M. Reiche
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

Spatial distribution and properties of oxide were examined in 300 mm nitrogen (N) doped CZ-Si. Experimentally grown materials with N ranging from ~ 1013 cm−3 to 1015 cm−3 were studied by infrared light scattering tomography, scanning infrared microscopy, transmission electron microscopy and electron beam induced current. It was established that an increasing N content improves the uniformity of the radial distribution of precipitates in the bulk of the wafer, the density of precipitates reaching a level of ~ 109 cm−3. The width of the denuded zone varies in the range from $15\;\mu$m to $70\;\mu$m depending on radial position and N doping level. Electron microscopy revealed lower oxide precipitate densities of about 105 to 108 cm−3. The results are interpreted in terms of existence of agglomerates of nanometer size precipitate nuclei and/or by the defect-induced strain relaxation around the precipitates.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goto, H., Pan, L.-S., Tanaka, M., Kashima, K., Jpn J. Appl. Phys. Part 1 40, 3944 (2001) CrossRef
K. Sueoka, M. Akatsuka, M. Yonemura, T. Ono, E. Asayama, Y. Koike, S. Sadamitsu, Proc. GADEST 2001, Solid State Phenom. 82–84, 49 (2002)
Ammon, W. V., Hölzl, R., Virbulis, J., Dornberger, E., Schmolke, R., Gräf, D., J. Cryst. Growth 226, 19 (2002) CrossRef
T. Müller, W. Siebert, K. Messmann, R. Walich, P. Krottenthaler, R. Hölz, A. Ikari, W. V. Ammon, Semicond. Silicon 2002, ECS Proc. 2002-2, 194 (2002)
Akhmetov, V. D., Richter, H., Lysytskiy, O., Wahlich, R., Müller, T., Mater. Sci. Semicond. Process. 5, 391 (2002) CrossRef
Seifert, W., Kittler, M., Vanhellemont, J., Mater. Sci. Eng. B 42, 260 (1996) CrossRef