Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:13:34.939Z Has data issue: false hasContentIssue false

Effect of rapid oxidation on optical and electrical properties of silicon nanowires obtained by chemical etching

Published online by Cambridge University Press:  25 May 2012

M. Karyaoui*
Affiliation:
Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif, Tunisia
A. Bardaoui
Affiliation:
Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif, Tunisia
M. Ben Rabha
Affiliation:
Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif, Tunisia
J.C. Harmand
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS Route Nozay, 91460 Marcoussis, France
M. Amlouk
Affiliation:
Unité de Physique des dispositifs à Semi-conducteurs UPDS, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
*
Get access

Abstract

In the present work, we report the investigation of passivated silicon nanowires (SiNWs) having an average radius of 3.7 μm, obtained by chemical etching of p-type silicon (p-Si). The surface passivation of the SiNWs was performed through a rapid oxidation conducted under a controlled atmosphere at different temperatures and durations. The morphology of the SiNWs was examined using a scanning electron microscope (SEM) that revealed a wave-like structure of dense and vertically aligned one-dimensional silicon nanostructures. On the other hand, optical and electrical characterizations of the SiNWs were studied using a UV-Vis-NIR spectrometer, the Fourier transform infrared spectroscopy (FTIR) and I-V measurements. The reflectance of SiNWs has been dropped to approximately 2% in comparison to that of bare p-Si. This low reflectance slightly increased after carrying out the rapid thermal annealing. The observed behavior was attributed to the formation of a SiO2 layer, as confirmed by FTIR measurements. Finally, the electrical measurements have shown that the rapid oxidation, at certain conditions, contributes to the improvement of the electrical responses of the SiNWs, which can be of great interest for photovoltaic applications.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hsieh, Y.P., Chen, H.Y., Lin, M.Z., Shiu, S.C., Hoffmann, M., Chern, M.Y., Jia, X., Yang, Y.J., Chang, H.J., Huang, H.M., Tseng, S.C., Chen, L.C., Chen, K.H., Lin, C.F., Liang, C.T., Chen, Y.F., Nano Lett. 9, 1839 (2009)CrossRef
Fukata, N., Oshima, T., Tsurui, T., Ito, S., Murakami, K., Sci. Technol. Adv. Mater. 6, 628 (2005)CrossRef
Ni, Z.-F., Ying, P.-Z., Luo, Y., Li, Z.-S., J. China Univ. Min. & Technol. 17, 0587 (2007)CrossRef
Morales, A.M., Lieber, C.M., Science 279, 208 (1998)CrossRef
Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., Lee, S.T., Appl. Phys. Lett. 72, 1835 (1998)CrossRef
Westwater, J., Gosain, D.P., Usui, S., Jpn J. Appl. Phys. 36, 6204 (1997)CrossRef
Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., Lieber, C.M., Appl. Phys. Lett. 78, 2214 (2001)CrossRef
Schubert, L., Werner, P., Zakharov, N.D., Gerth, G., Kolb, F.M., Long, L., Gosele, U., Tan, T.Y., Appl. Phys. Lett. 84, 4968 (2004)CrossRef
Yu, L.W., O’Donnell, B., Alet, P.-J., Conesa-Boj, S., Peiro’, F., Arbiol, J., Roca i Cabarrocas, P., Nanotechnology 20, 225604 (2009)CrossRef
Arbiol, J., Kalache, B., Roca i Cabarrocas, P., Morante, J.R., Fontcuberta i Morral, A., Nanotechnology 18, 305606(2007)CrossRef
Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.D., Nature Mater. 4, 455 (2005)CrossRef
Peng, K., Lu, A., Zhang, R., Lee, S.T., Adv. Funct. Mater. 18, 3026 (2008)CrossRef
Sun, X.Z., Lin, L.H., Li, Z.C., Zhang, Z.J., Feng, J.Y., Appl. Surf. Sci. 256, 916 (2009)CrossRef
Huang, C.-Y., Yang, Y.-J., Chen, J.-Y., Wang, C.-H., Chen, Y.-F., Hong, L.-S., Liu, C.-S., Wu, C.-Y., Appl. Phys. Lett. 97, 013503 (2010)CrossRef
Ben Rabha, M., Mohamed, S.B., Dimassi, W., Gaidi, M., Ezzaouia, H., Bessais, B., Phys. Status Solidi C 8, 887 (2011)CrossRef
Srivastava, S.K., Kumar, D., Singh, P.K., Kar, M., Kumar, V., Husain, M., Solar Energy Mater. Solar Cells 94, 1506 (2010)CrossRef
Yu, H.T., Chen, S., Quan, X., Zhao, H.M., Zhang, Y.B., Appl. Catal. B Env. 90, 242 (2009)CrossRef
Sun, X.Z., Tao, R., Lin, L.H., Li, Z.C., Zhang, Z.J., Feng, J.Y., Appl. Surf. Sci. 257, 3861 (2011)CrossRef
Peng, K.-Q., Lee, S.-T., Adv. Mat. 23, 198 (2011)CrossRef
Nakamoto, K.Z., Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry, 6th edn. (John Wiley & Sons, New York, 2008)Google Scholar
Hu, Q.L., Suzuki, H., Gao, H., Araki, H., Yang, W., Noda, T.S., Chem. Phys. Lett. 378, 299(2003)CrossRef
Kim, R.J., Qin, W.P., Wei, G.D., Wang, G.F., Wang, L.L., Zhang, D.S., Zheng, K., Liu, N., J. Mater. Chem. Phys. 119, 309 (2010)CrossRef
Schroder, D.K., Semiconductor Material and Device Characterization (Wiley-Interscience Publication, Arizona, 1990), p. 147Google Scholar