Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T14:24:04.787Z Has data issue: false hasContentIssue false

Multi-objective optimization of the induction machinewith minimization of audible electromagnetic noise

Published online by Cambridge University Press:  10 May 2007

J. Le Besnerais*
Affiliation:
L2EP, École Centrale de Lille, 59651 Villeneuve d'Ascq, France
M. Hecquet
Affiliation:
L2EP, École Centrale de Lille, 59651 Villeneuve d'Ascq, France
V. Lanfranchi
Affiliation:
LEC, Université des Technologies de Compiègne, 60205 Compiègne, France
P. Brochet
Affiliation:
L2EP, École Centrale de Lille, 59651 Villeneuve d'Ascq, France
Get access

Abstract

Induction motors optimal design can involve many variables and objectives, and generally requires to make several trade-offs, especially when including the audible electromagnetic noise criterion beyond the usual performance criteria. Multiobjective optimization techniques based on Pareto optimality are useful to help us finding the most interesting solutions and decide which one(s) to adopt. However, it is not always easy to analyse the Pareto-optimal solutions obtained with such methods, especially when treating more than three objectives, and Pareto fronts may contain more data than we might think.This paper briefly describes an analytical model of the variable-speed squirrel-cage induction machine which computes both its performances and sound power level of electromagnetic origin. The model is then coupled to the Non-dominated Sorting Genetic Algorithm (NSGA-II) in order to perform global optimization with respect to several objectives (e.g. noise level, efficiency and material cost). Finally, an optimization problem is solved and analysed, and some useful visualization tools of the Pareto optimal solutions and their characteristics are presented.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huang, H., Fuchs, E., Zak, Z., IEEE Trans. Energy Convers. 3, 2 (1988)
Fei, R., Fuchs, E., Huang, H., IEEE Trans. Energy Convers. 4, 4 (1989) CrossRef
X. Alabern, E. Valero, IEEE Trans. Electr. Mach. and Drives (2003)
Liuzzi, G., Lucidi, S., Parasiliti, F., Villani, M., IEEE Trans. Magn. 39, 3 (2003) CrossRef
Nurdin, M., Poloujadoff, M., Faure, A., IEEE Trans. Energy Convers. 6, 2 (1991) CrossRef
Poloujadoff, M., Christaki, E., Bergniann, C., IEEE Trans. Energy Convers. 9, 4 (1994) CrossRef
Kim, M., Lee, D., Jung, H., IEEE Trans. Magn. 34, 5 (1998)
Singh, C., Sarkar, D., IEE Proc. 139, 4 (1992)
Amor, A.H., Timar, P., Poloujadoff, M., IEEE Trans. Energy Convers. 10, 4 (1995)
J. Gieras, Noise of polyphase electric motors (CRC Press, 2005)
P. Timar, Noise and vibration of electrical machines (Elsevier, 1989)
K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, IEE Trans. Evolut. Comput. 6 (2002)
Ait-Hammouda, A., Hecquet, M., Goueygou, M., Brochet, P., Math. Comput. Simul. 71, 4 (2006)
J.L. Besnerais, A. Fasquelle, M. Hecquet, V. Lanfranchi, P. Brochet, A. Randria, D. Zorzynski, S. Bujacz, A Fast Noise-Predictive Multiphysical Model of the PWM-controlled Induction Machine, in Proceedings of the International Conference on Electrical Machines (2006)
A. Ghoggal, M. Sahraoui, A. Aboubou, S. Zouzou, H. Razik, IEEE Int. Conf. Ind. Technol., 191 (2005)
S.J. Yang, Low noise electrical motors (Clarendon Press, 1981)
Timar, P., Lai, J., IEE Proc. Electr. Power Appl. 141, 6 (1994) CrossRef
J.L. Besnerais, V. Lanfranchi, M. Hecquet, P. Brochet, Acoustic noise of electromagnetic origin in a fractional-slot induction machine, in Proceedings of SSD'07, 2007 (to be published)
M. Mohan, K. Deb, S. Mishra, Tech. rep., Kanpur Genetic Algorithms Laboratory (KanGAL) (2003)
A.E. Smith, D.W. Coit, Handbook of Evolutionary Computation (Oxford Press, 1995)