Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T03:05:16.561Z Has data issue: false hasContentIssue false

New modeling of the power diode using the VHDL-AMS language

Published online by Cambridge University Press:  19 December 2007

M. Najjari
Affiliation:
Laboratoire d'électroniques et information technologique, École Nationale d'Ingénieurs de Sfax, Route Soukra km 4, PB W, 3038 Sfax, Tunisia
H. Mnif
Affiliation:
Laboratoire d'électroniques et information technologique, École Nationale d'Ingénieurs de Sfax, Route Soukra km 4, PB W, 3038 Sfax, Tunisia
H. Samet
Affiliation:
Laboratoire d'électroniques et information technologique, École Nationale d'Ingénieurs de Sfax, Route Soukra km 4, PB W, 3038 Sfax, Tunisia
N. Masmoudi*
Affiliation:
Laboratoire d'électroniques et information technologique, École Nationale d'Ingénieurs de Sfax, Route Soukra km 4, PB W, 3038 Sfax, Tunisia
Get access

Abstract

Design of integrated power systems requires prototype-less approaches. Accurate simulations are necessary for analysis and verification purposes. Simulation relies on component models and associated parameters. This paper focuses on an implementation of a physic-based analytical PIN diode model [Power Electron. 8, 342 (1993)] with the very high description language VHDL-AMS [IEEE Computer Society, IEEE Draft Standard VHDL-AMS Language Reference Manual, 1997]. The Lumped Charge (LC) concept of Linvill is employed. The state-of-art of parameter extraction methods is briefly recalled and a step-by-step extraction procedure for the model parameters is described. Due to poor agreement between simulation results and experimental data, an improvement is added to the model. Finally, our improved model is validated with a confrontation of the simulated and the experimental curves for both current and voltage at different range of the operating conditions. All this operation was made under the Free version of the “SIMPLORER©-SV 7.0” environment.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ma, C.L., Lauritzen, P.O., IEEE Trans. Power Electron. 8, 342 (1993) CrossRef
IEEE Computer Society, IEEE Draft Standard VHDL-AMS Language Reference Manual, 1997
Masmoudi, N., M'bairi, D., Allard, B., Morel, H., IEEE Trans. Ind. Electron. 48, 864 (2001) CrossRef
Zhang, H., Pappas, J.A., IEEE Trans. Magn. 37, 406 (2001) CrossRef
R. Kolessar, H.-P. Nee, A new physics-based circuit model for 4H-SiC power diodes implemented in SABER, in Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, 4–8 March 2001, Vol. 2, pp. 989–994
McNutt, T.R., Hefner Jr, A.R., Mantooth, H.A., Duliere, J., Berning, D.W., Singh, R., IEEE Trans. Power Electron. 19, 573 (2004) CrossRef
Y-C. Liang, V.J. Gosbell, IEEE Trans. Power Electron. 5, 346 (1990) CrossRef
Danielsson, B.E., Sol. State Electron. 28, 375 (1985) CrossRef
V.R. Kasulasrinivas, H.W. Carter, Modeling and simulating semiconductor devices using VHDL-AMS, in International Workshop on Behavioral Modeling and Simulation, 2000. Proceedings, 2000 IEEE/ACM, 19–20 Oct. 2000, pp. 22–27
BYT12 600 datasheet, datasheetArchive; (Jun. 1998). [Online]. Available: http://www.datasheetArchive.com
C.L. Ma, P.O. Lauritzen, P.Y. Lin, A physically-based lumped-charge P- $\nu $ -N diode model, in Fifth European Conference on Power Electronics and Applications, 1993, 13–16 Sep. 1993, Vol. 2, pp. 23–28
C.L. Ma, P.O. Lauritzen, J. Sigg, A physics-based GTO model for circuit simulation, in Power Electronics Specialists Conference, 1995, PESC '95 Record., 26th Annual IEEE 18–22 June 1995, Vol. 2, pp. 872–878
Hossain, Z., Olejniczak, K.J., Mantooth, H.A., Yang, E.X., Ma, C.L., IEEE Trans. Power Electron. 16, 264 (2001) CrossRef
Budihardjo, I., Lauritzen, P.G., IEEE Trans. Power Electron. 10, 379 (1995) CrossRef
P. Antognetti, G. Massobrio, Semiconductor Device Modeling with SPICE (MCGraw-Hill, New York, 1988)
X. Kang, A. Caiafa, E. Santi, J.L. Hudgins, P.R. Palmer, Parameter extraction for a power diode circuit simulator model including temperature dependent effects, in Applied Power Electronics Conference and Exposition, 2002, APEC 2002. Seventeenth Annual IEEE, 10–14 March 2002, Vol. 1, pp. 452–458
Barnier, N., Brisset, P., Optimisation par algorithme génétique sous contrainte, Rev. Tech. Sci. Inf. 18, 1 (1999)
Ansoft Simplorer User Manuel Ver 6.0 pro.
Garrab, H., Allard, B., Morel, H., Ammous, K., Ghedira, S., Amimi, A., Besbes, K., Guichon, J.-M., IEEE Trans. Power Electron. 20, 660 (2005) CrossRef
N. Mohan, T. Undeland, R. Robbins, Power Electronics Converters, Applications and Design, 2nd edn. (Wiley Interscience, New York, 1995)
R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd edn. (Kluwer, Berlin, Germany, 2001)