Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T05:55:14.501Z Has data issue: false hasContentIssue false

Numerical simulation of influence of anode current density distributions on anode melting pool flow in high-current vacuum arc subjected to axial magnetic fields

Published online by Cambridge University Press:  11 August 2011

L. Wang*
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P.R. China
S. Jia
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P.R. China
B. Chen
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P.R. China
L. Zhang
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Y. Liu
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P.R. China
D. Yang
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Z. Shi
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Get access

Abstract

In order to investigate the formation reason and influence factors of anode melting pool rotation in high-current vacuum arcs (HCVAs) subjected to axial magnetic field (AMF), the rotational symmetric magnetohydrodynamic (MHD) model of anode melting pool flow (AMPF) phenomena in HCVA is established. Based on this model, the influence of different anode current density distributions (ACDDs) on AMPF is simulated and analyzed. Simulation results show that the influence of ACDDs on rotational velocity of AMPF is significant. According to simulation results, the more nonuniform ACDDs can lead to the more rotational velocity. That is to say, the more serious current constriction in HCVA will lead to the larger rotational velocity of AMPF. The changing trend of rotational velocity in simulation results at different moments is in agreement with the experimental observation. Experimental and simulation results both show that the maximal rotational velocity appears at 9–10 ms moments.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lafferty, J.M., Vacuum Arcs: Theory and Application (John Wiley and Sons, New York, 1976)Google Scholar
Chapelle, P., Bellot, J.P., Duval, H., Jardy, A., Ablitzer, D., J. Phys. D: Appl. Phys. 35, 137 (2002)CrossRef
Anders, A., Schein, J., Qi, N., Rev. Sci. Instrum. 71, 827 (2000)CrossRef
Boxman, R.L., Martin, P.J., Sanders, D.M., Handbook of Vacuum Arc Science and Technology (Noyes, Park Ridge, NJ, 1995)Google Scholar
Juttner, B., J. Phys. D: Appl. Phys. 34, R103 (2001)CrossRef
Toya, H., Uchida, Y., Hayashi, T., Murai, Y., J. Appl. Phys. 60, 4127 (1986)CrossRef
Kaneko, E., Tamagawa, T., Okumura, H., Yanabu, S., IEEE Trans. Plasma Sci. 11, 169 (1983)CrossRef
Schellekens, H., in Proc. of 20th ISDEIV, Tours, France 2002, pp. 3843
Yang, D., Wang, L., Jia, S., Wang, L., Shi, Z., Li, Y., IEEE Trans. Plasma Sci. 38, 206 (2010)CrossRef
Gellert, B., Egli, W., J. Phys. D: Appl. Phys. 21, 1721 (1988)CrossRef
Watanabe, K., Somei, H., Satoh, Y., Kaneko, E., Oshima, I., Presented at IEE Japan Power Energy, 1994.Google Scholar
Schade, E., Shmelev, D., Kleberg, I., in 21st Int. Conf. on Electrical Contacts (ICEC2002), Zurich, Switzerland, 2002Google Scholar
Wang, L., Jia, S., Yang, D., Liu, K., Su, G., Shi, Z., J. Phys. D: Appl. Phys. 42, 145203 (2009)CrossRef
Wang, L., Jia, S., Liu, Y., Chen, B., Yang, D., Shi, Z., J. Appl. Phys. 107, 113306 (2010)CrossRef
Matsumoto, T., Fujii, H., Ueda, T., Kamai, M., Nogi, K., Meas. Sci. Technol. 16, 432 (2005)CrossRef
Delachaux, T., Fritz, O., Gentch, D., Schade, E., Shmelev, D.L., in 28th ICPIG, Prague, Czech Republic, 2007, pp. 18031806 Google Scholar
Boxman, R.L., Goldsmith, S., J. Appl. Phys. 54, 592 (1983)CrossRef
Wang, L., Jia, S., Shi, Z., Rong, M., Phys, J., J. Phys. D: Appl. Phys. 38, 1034 (2005)CrossRef