Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T10:09:29.093Z Has data issue: false hasContentIssue false

Photocatalytic and optical properties of nanocomposite TiO2-ZnO thin films

Published online by Cambridge University Press:  30 January 2012

S.H. Mohamed*
Affiliation:
Physics Department, College of Science, Qassim University, P.O. 6644, 51452 Buryadh, Kingdom of Saudi Arabia Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
M. El-Hagary
Affiliation:
Physics Department, College of Science, Qassim University, P.O. 6644, 51452 Buryadh, Kingdom of Saudi Arabia Physics Department, Faculty of Science, Helwan University, 11792 Helwan, Cairo, Egypt
S. Althoyaib
Affiliation:
Physics Department, College of Science, Qassim University, P.O. 6644, 51452 Buryadh, Kingdom of Saudi Arabia
*
Get access

Abstract

Nanocomposite TiO2-ZnO thin films, with different ZnO content, were deposited by electron-beam evaporation on glass and Si(1 0 0) substrates. The resulting films were annealed in air for 1 h at 450 °C. X-ray diffraction revealed the presence of monoclinic β-TiO2 and hexagonal ZnO for the films prepared with ZnO content of 0 at.% and 100 at.%, respectively. Mixed monoclinic β-TiO2 and hexagonal ZnO phases were observed at higher ZnO content between 50 at.% and 85 at.%. Spectroscopic ellipsometry (SE) was employed to determine the film thickness and optical constants. A two-layer model was used to describe the experimental ellipsometric data. At any wavelength longer than 390 nm, the refractive index decreases gradually with increasing ZnO content in the composite films. The optical band gap increased with increasing ZnO content. The photocatalytic behavior of TiO2-ZnO thin films was mainly evaluated by measuring the decomposition of methylene blue. The nanocomposite film with ZnO content of 8 at.% has the best photocatalytic activities.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chatterjee, D., Dasgupta, S., J. Photochem. Photobiol. C 6, 186 (2005)CrossRef
Franco, A., Neves, M.C., Ribeiro Carrott, M.M.L., Mendonc, M.H., Pereira, M.I., Monteiro, O.C., J. Hazard. Mater. 161, 545 (2009)CrossRef
Mohamed, S.H., Kappertz, O., Leervad Pedersen, T.P., Drese, R., Wuttig, M., Phys. Status Solidi A 198, 224 (2003)CrossRef
Mohamed, S.H., Shaaban, E.R., Physica B 406, 4327 (2011)CrossRef
Jiang, Y., Yan, Y., Zhang, W., Ni, L., Sun, Y., Yin, H., Appl. Surf. Sci. 257, 6583 (2011)CrossRef
Poelman, H., Poelman, D., Depla, D., Tomaszewski, H., Fiermans, L., De Gryse, R., Surf. Sci. 482–485, 940 (2001)CrossRef
Chou, P.W., Treschev, S., Chung, P.H., Cheng, C.L., Appl. Phys. Lett. 89, 131919 (2006)CrossRef
Dobrowolski, J.A., Poitras, D., Ma, P., Vakil, H., Acree, M., Appl. Opt. 41, 3075 (2002)CrossRef
Poitras, D., Larouche, S., Martinu, L., Appl. Opt. 41, 5249 (2002)CrossRef
Schubert, M.F., Xi, J.Q., Kim, J.K., Schubert, E.F., Appl. Phys. Lett. 90, 141115 (2007)CrossRef
Kashimura, S., Islam, M.R., Takeuchi, M., Hongo, A., Ohira, K., Imoto, K., Kuma, S., Appl. Surf. Sci. 142, 58 (1999)CrossRef
Ye, C., Pan, S.S., Teng, X.M., Li, G.H., J. Appl. Phys. 102, 013520 (2007)CrossRef
Jia, T., Wang, W., Long, F., Fu, Z., Wang, H., Zhang, Q., J. Alloys Compd. 484, 410 (2009)CrossRef
Chung, Y.-A., Chang, Y.-C., Lu, M.-Y., Wang, C.-Y., Chen, L.-J., J. Electrochem. Soc. 156, F75 (2009)CrossRef
Chou, T.P., Zhang, Q.F., Cao, G.Z., J. Phys. Chem. C 111, 18804 (2007)CrossRef
Zhang, H.J., Wen, D.Z., Surf. Coat. Technol. 201, 5720 (2007)CrossRef
Verma, A., Basu, A., Bakhshi, A.K., Agnihotry, S.A., Solid State Ion. 176, 2285 (2005)CrossRef
Vorotilov, K.A., Orlova, E.V., Petrovsky, V.I., Thin Solid Films 207, 180 (1992)CrossRef
Cullity, B.D., Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1979), p. 102Google Scholar
Herzinger, C.M., Johs, B., McGahan, W.A., Woollam, J.A., Paulson, W., J. Appl. Phys. 83, 3323 (1998)CrossRef
Synowicki, R.A., Thin Solid Films 313–314, 394 (1998)CrossRef
Chen, J.S., Chao, S., Kao, J.S., Niu, H., Chen, C.H., Appl. Opt. 35, 90 (1996)CrossRef
Kuo, D.H., Tzeng, K.H., Thin Solid Films 460, 327 (2004)CrossRef
Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.J., Morkoc, H., J. Appl. Phys. 98, 041301 (2005)CrossRef
Suzuki, N., Tomita, Y., Kojima, T., Appl. Phys. Lett. 81, 4121 (2002)CrossRef
Irimpan, L., Krishnan, B., Nampoori, V.P.N., Radhakrishnan, P., J. Colloid Interface Sci. 324, 99 (2008)CrossRef
Colvin, V.L., Alivisatos, A.P., Tobin, J.G., Phys. Rev. Lett. 66, 2786 (1991)CrossRef
Jiang, Y., Sun, Y., Liu, H., Zhu, F., Yin, H., Dyes Pigm. 78, 77 (2008)CrossRef
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., J. Photochem. Photobiol. A: Chem. 85, 247 (1995)CrossRef
Sukharev, V., Kershaw, R., J. Photochem. Photobiol. A: Chem. 98, 165 (1996)CrossRef