Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T06:15:49.784Z Has data issue: false hasContentIssue false

Pore closure in spark plasma sintered alumina studied by variable energy positrons

Published online by Cambridge University Press:  30 January 2012

N. Djourelov*
Affiliation:
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria
Y. Aman
Affiliation:
Université de Lyon, Laboratoire MATEIS UMR CNRS 5510, INSA Lyon, Bât. B. Plascal, 5e, av. Jean Capelle, 69621 Villeurbanne Cedex, France
D. Sillou
Affiliation:
Université de Savoie, Laboratoire LMOPS, UMR 5041 CNRS, av. du Lac d’Annecy, 73370 Le Bourget du Lac, France
P. Nédélec
Affiliation:
Université de Lyon, Laboratoire IPNL, UCB Lyon 1, Bâtiment Paul Dirac, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex, France
Get access

Abstract

The porosity type in spark plasma sintered alumina was studied by variable energy positron beam technique. The gamma ray energy spectra of interest in the region of the annihilation peak were analyzed by means of Compton-to-peak ratio and deconvolution into Gaussians of the Doppler broadened annihilation peak. The contributions of the two narrow Gaussians (centered and red-shifted) revealed difference in the porosity type according to the heating rate. The samples sintered at low heating rate showed open porosity. Closed porosity appeared at 1050 °C as a result of formation of isolated pores. For the samples sintered at high heating rate, closed porosity was found to be significant even at comparatively low sintering temperatures which was explained by a blocking effect at the sample free surface.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kingery, W.D., Bowen, H.K., Uhlmann, D.R., Introduction to Ceramics (John Wiley Sons Inc., New York, 1976)Google Scholar
Kang, S.-J.L., Sintering, Densification, Grain Growth, and Microstructure (Elsevier, Oxford, 2005)Google Scholar
Perez-Maqueda, L.A., Criado, J.M., Real, C., J. Am. Ceram. Soc. 85, 763 (2002)CrossRef
Coble, R.L., J. Appl. Phys. 32, 787 (1961)CrossRef
Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M., J. Mater. Sci. 41, 763 (2006)CrossRef
Schultz, P.J., Lynn, K.G., Rev. Mod. Phys. 60, 701 (1988)CrossRef
Petkov, M.P., Weber, M.H., Lynn, K.G., Rodbell, K.P., Appl. Phys. Lett. 79, 3884 (2001)CrossRef
Dlubek, G., Fretwell, H.M., Alam, M.A., Macromolecules 33, 187 (2000)CrossRef
Van Petegem, S., Dauwe, C., Van Hoecke, T., De Baerdemaeker, J., Segers, D., Phys. Rev. B 70, 115410 (2004)CrossRef
Langer, J., Hoffmann, M.J., Guillon, O., Acta Mater. 57, 5454 (2009)CrossRef
Aman, Y., Garnier, V., Djurado, E., J. Am. Ceram. Soc. 94, 2825 (2011)CrossRef
Aman, Y., Garnier, V., Djurado, E., J. Eur. Ceram. Soc. 29, 3363 (2009)CrossRef
De Baerdemaeker, J., Dauwe, C., Appl. Surf. Sci. 194, 52 (2002)CrossRef
van Veen, A., Schut, H., Clement, M., de Nies, J., Kruseman, A., Ijpma, M., Appl. Surf. Sci. 85, 216 (1995)CrossRef
Vehanen, A., Saarinen, K., Hautojärvi, P., Huomo, H., Phys. Rev. B 35, 4606 (1987)CrossRef
Chaglar, I., Rice-Evans, P., Marko, K.A., Rich, A., Nucl. Instrum. Methods 187, 581 (1981)CrossRef
Djourelov, N., DBAN – Matlab based software for decomposition of the Doppler broadened annihilation line. Available on request (unpublished)
Djourelov, N., Aman, Y., Berovski, K., Nédélec, P., Charvin, N., Garnier, V., Djurado, E., Phys. Status Solidi A 208, 795 (2011)CrossRef
Nieminen, R., Oliva, J., Phys. Rev. B 22, 2226 (1980)CrossRef
Nakanishi, H., Jean, Y.C., in Positron and Positronium Chemistry, edited by Schrader, D.M., Jean, Y.C.(Elsevier, Amsterdam, 1988), p. 159, Chap. 5Google Scholar
Besson, J., Abouaf, M., Acta Metall. Mater. 39, 2225 (1991)CrossRef