Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:13:15.777Z Has data issue: false hasContentIssue false

Removal of NO by simultaneous action of dielectric-barrier discharge and TiO2 photocatalyst

Published online by Cambridge University Press:  05 June 2009

I. Jõgi*
Affiliation:
Institute of Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia
V. Bichevin
Affiliation:
Institute of Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia
M. Laan
Affiliation:
Institute of Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia
A. Haljaste
Affiliation:
Institute of Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia
H. Käämbre
Affiliation:
Institute of Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia
V. Sabre
Affiliation:
Institute of Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia
Get access

Abstract

NO oxidation by simultaneous action of a dielectric barrier discharge and TiO2 photocatalyst was investigated as a function of the inlet gas composition (NO, O2, N2) and the input energy. Concentrations of various NOx species and ozone in the outlet were detected by the optical absorption spectroscopy. Higher content of O2 (10% and higher) increased the removal of NO and resulted in a higher output of N2O5. TiO2 coating on a reactor electrode resulted in the time-depending oxidation of NO. Initially the concentration of untreated NO fell below the level achieved without TiO2 but after few minutes the positive effect of TiO2 diminished. The initial decrease in NO level due to the presence of TiO2 coating is explainable by surface reactions of NO species and absorbed oxygen. After few minutes, the surface states responsible for the initial removal of NO saturated and the effect of TiO2 vanished.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gentile, A.C., Kushner, M.J., J. Appl. Phys. 78, 2074 (1995) CrossRef
Penetrante, B.M., Hsiao, M.C., Merritt, T., Vogtlin, G.E., Wallman, P.H., Neiger, M., Wolf, O., Hammer, T., Broer, S., Appl. Phys. Lett. 68, 3719 (1996) CrossRef
C.R. McLarnon, B.M. Penetrante, SAE Paper No. 982433 (1998)
Vinogradov, I.P., Wiesemann, K., Plasma Sources Sci. Technol. 6, 307 (1997) CrossRef
Fresnet, F., Baravian, G., Pasquiers, S., Postel, C., Puech, V., Rousseau, A., Rozoy, M., J. Phys. D: Appl. Phys. 33, 1315 (2000) CrossRef
Barman, S., Philip, L., Environ. Sci. Technol. 40, 1035 (2006) CrossRef
Lim, T.H., Jeong, S.M., Kim, S.D., Gyenis, J., J. Photochem. Photobiol. A: Chem. 134, 209 (2000) CrossRef
Devahasdin, S., Fan, C., Li, K., Chen, D.H., J. Photochem. Photobiol. A: Chem. 156, 161 (2003) CrossRef
Kim, H.H., Tsunoda, K., Katsura, S., Mizuno, A.A., IEEE Trans. Plasma. Sci. 35, 1306 (1999)
Daito, S., Tochikubo, F., Watanabe, T., Jpn J. Appl. Phys. 40, 2475 (2001) CrossRef
S. Iwasaki, Y. Ehara, H. Kishida, S. Ono, T. Ito, in Symp. High Pressure, Low Temperature Plasma Chemistry (HAKONE IX), Padua, Italy, 2004 (7th topic, oral presentation number 3)
Kim, H., Jun, H., Sakaguchi, Y., Minami, W., Plasma Sci. Technol. 10, 53 (2008) CrossRef
Guaitella, O., Thevenet, F., Guillard, C., Rousseau, A., J. Phys. D: Appl. Phys. 39, 2964 (2006) CrossRef
I. Jõgi, V. Bichevin, M. Laan, A. Haljaste, H. Käämbre, Plasma Chem. Plasma Process. (in press), DOI 10.1007/s11090-009-9171-5
Guaitella, O., Thevenet, F., Puzenat, E., Guillard, C., Rousseau, A., Appl. Catal. B: Environ. 89, 296 (2008) CrossRef
O. Guaitella, K. Allegraud, C. Lazzaroni, A. Rousseau, in XXVII Int. Conf. Phenomena in Ionized Gases (ICPIG), (Institute of Plasma Physic AS CR, v.v.1, Prague, 2007), http://icpig2007.ipp.cas.cz/files/download/cd-cko/ICPIG2007/Proceedings_ICPIG2007.html