Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T09:48:35.544Z Has data issue: false hasContentIssue false

The role of a top oxide layer in cavities formed by MeV He implantation into Si

Published online by Cambridge University Press:  12 June 2003

C. Liu*
Affiliation:
CERI-CNRS, 3A rue de la Férollerie, 45071 Orléans Cedex, France
E. Ntsoenzok
Affiliation:
CERI-CNRS, 3A rue de la Férollerie, 45071 Orléans Cedex, France
R. Delamare
Affiliation:
CERI-CNRS, 3A rue de la Férollerie, 45071 Orléans Cedex, France
D. Alquier
Affiliation:
LMP, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex, France
G. Regula
Affiliation:
UMR TECSEN, Université de Marseille, Faculté des Sciences et Techniques, 231, 13397 Marseille Cedex 20, France
Get access

Abstract

In this paper, we report the results on the influence of a top oxide layer on the He-cavity formation in silicon samples. Si samples with top oxide layers of different thickness together with the pure silicon (used as reference) were implanted at room temperature with 1 MeV 3He at a dose of 5 × 1016 He/cm2. After implantation, the oxide layer was removed by using HF solution. Cross-sectional transmission electron microscopy (XTEM) was used to study the induced cavities followed by annealing. The results show that He implantation induces a well-defined-damaged layer with a thickness of about 180 nm in the reference Si. The defects are mainly made up of big cavities in the middle of the projected range and a large population of smaller ones both towards the surface and into the bulk. Very few stacking faults and dislocations loops can be seen around this band. The creation of cavities in Si with a 2.3 μm oxide layer, however, is a little different. Regions containing a chain of the biggest cavities surrounded by few smaller ones have also been found. Unexpected results are obtained in Si with a 1.2 μm oxide layer. In this case, only a monolayer of big cavities is observed at the depth corresponding to the projected range. The results are discussed in combination with SIMS measurements and SRIM simulations.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Griffioen, C.C., Evans, J.H., de Jong, P.C., Van Veen, A., Nucl. Instrum. Methods B 27, 417 (1987) CrossRef
Godey, S., Sauvage, T., Ntsoenzok, E., Erramli, H., Beaufort, M.F., Barbot, J.F., Leroy, B., J. Appl. Phys. 87, 2158 (2000) CrossRef
Follstaedt, D.M., Myers, S.M., Barbour, J.C., Petersen, G.A., Rens, J.L., Dawson, L.R., Lee, S.R., Nucl. Instrum. Methods B 160, 476 (2000) CrossRef
Wong-Leung, J., Ascheron, C.E., Peteavic, M., Elliman, R.G., Williams, J.S., Appl. Phys. Lett. 66, 1231 (1995) CrossRef
Raineri, V., Battaglia, A., Riminis, E., Nucl. Instrum. Methods B 96, 249 (1995) CrossRef
Myers, S.M., Follstaedt, D.M., Petersen, G.A., Seager, C.H., Stein, H.J., Wampler, W.R., Nucl. Instrum. Methods B 106, 379 (1995) CrossRef
Williams, J.S., Conway, M.J., Wong-Leung, J., et al., Appl. Phys. Lett. 25, 2424 (1999) CrossRef
Evans, J.H., Van Veen, A., Griffioen, C.C., Nucl. Instrum. Methods B 28, 360 (1987) CrossRef
Raineri, V., Ginffruda, S., Riminis, E., Solid State Phenom. 82-84, 273 (2002) CrossRef
H. Schroeder, P.F.P. Fichtner, H. Trinkaus, Fundamental Aspects of Inert Gases in Solids, edited by S.E. Donnelly, J.H. Evans (Plenum Press, New York, 1991), Vol. 279, p. 289
Raineri, V., Saggio, M., Riminis, E., J. Mater. Res. 15, 1449 (2000) CrossRef
S. Godey, Ph.D. Thesis, University of Orléans, France, 1999
J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping, rang of ions in solids (Pergamon, New York, 1985)
Sigmon, T.W., Chu, W.K., Lugujjo, E., Mayer, J.W., Appl. Phys. Lett. 24, 105 (1974) CrossRef
Harrington, W.L., Honing, R.E., Goodman, A.M., Williams, R., Appl. Phys. Lett. 27, 644 (1975) CrossRef
Clarke, R.A., Tapping, R.L., Hopper, M.A., Young, L., J. Electrochem. Soc. 122, 1347 (1975) CrossRef