Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T15:07:18.419Z Has data issue: false hasContentIssue false

Synthesis and photoluminescence studies on YAl3(BO3)4:Tb3+ phosphor

Published online by Cambridge University Press:  12 December 2014

Ranganathan Satheesh Kumar
Affiliation:
Department of Physics, Anna University, MIT Campus, Chennai 600 044, Tamil Nadu, India
Velladurai Ponnusamy*
Affiliation:
Department of Physics, Anna University, MIT Campus, Chennai 600 044, Tamil Nadu, India
Mundiyanikal Thomas Jose
Affiliation:
Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India
Vairan Sivakumar
Affiliation:
Research and Development Laboratory, Department of Physics, Saveetha Engineering College, Chennai 602 105, Tamil Nadu, India
Get access

Abstract

Terbium (Tb3+) doped yttrium aluminium borate phosphors (YAl3(BO3)4) with different compositions such as YAl3(BO3)4:Tb3+, Y1−xAl3(BO3)4:Tbx3+ and YAl(3−x)(BO3)4:Tbx3+ (x = 1−8 mol.%) were synthesized using modified solid state reaction technique. The synthesized phosphor was studied using powder X-ray diffraction analysis (XRD), photoluminescence spectroscopy (PL), high resolution-scanning electron microscope (HR-SEM). Lattice parameters are calculated for the Tb3+ doped and substituted YAB phosphors using XRD analysis. The phosphor exhibits green emission at 572 nm with 375 nm of excitation. It is found that the Tb3+ ions substitution in the sites Y3+ and Al3+ ions in Y1–xAl3(BO3)4:Tbx3+ and YAl(3–x)(BO3)4:Tbx3+ leads to overlapping of energy levels which affects the PL intensity of the phosphor significantly. Thus, phosphor synthesized with the composition YAl3(BO3)4:Tb3+, acquires higher photoluminescence (PL) intensity when compared to Y1–xAl3(BO3)4:Tbx3+ and YAl(3–x)(BO3)4:Tbx3+ phosphors. Temperature dependent PL property (thermal quenching studies) of YAl3(BO3)4:Tb3+ was also performed up to 250 °C. Further, it is found that the PL intensity of the studied phosphor is comparable with commercial green phosphor. HR-SEM analysis demonstrates that the phosphors are grown as nanorods with an average diameter of 50–80 nm and length 250–500 nm.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Denault, K.A., Cheng, Z., Brgoch, J., Den Baarsa, S.P., Seshadri, R., J. Mater. Chem. C 1, 7339 (2013)CrossRef
Xie, H., Xu, L., Qin, L., Huang, Y., Wei, D., Kim, S., Seo, H.J., Mater. Lett. 115, 18 (2014)CrossRef
Fang, H., Sun, J., Geng, C., Zhang, L., Yan, Q., Mater. Lett. 100, 216 (2013)CrossRef
Kang, D., Yoo, H.S., Jung, S.H., Kim, H., Jeon, D.Y., J. Phys. Chem. C 115, 24334 (2011)CrossRef
Kim, K., Moon, Y.-M., Choi, S., Jung, H.-K., Nahm, S., Mater. Lett. 62, 3925 (2008)CrossRef
Koporulina, E.V., Leonyuk, N.I., Pilipenko, O.V., Mokhov, A.V., Bocelli, G., Righi, L., Mater. Lett. 47, 145 (2001)CrossRef
Guifang, L., Quanxi, C., Zhimin, L., Yunxia, H., J. Rare Earth. 26, 792 (2008)
Lee, K.-G., Yu, B.-Y., Pyun, C.-H., Mho, S.-I., Solid State Commun. 122, 485 (2002)CrossRef
Dotsenko, V.P., Berezovskaya, I.V., Efryushina, N.P., Voloshinovskii, A.S., Stryganyuk, G.B., J. Mater. Sci. 45, 1472 (2010)CrossRef
Majchrowski, A., Jaroszewicz, L.R., Cieslik, I., Fedorchuk, A.O., J. Mater. Sci.: Mater. Electron. 24, 1485 (2013)
Ren, Z., Tao, C., Yang, H., J. Mater. Sci.: Mater. Electron. 19, 319 (2008)
Yan, B., Wang, C., Solid State Sci. 10, 89 (2008)
Li, G., Li, Z., Cao, Q., Huang, Y., Int. J. Appl. Ceram. Technol. 10, 631 (2013)CrossRef
Satheesh Kumar, R., Ponnusamy, V., Jose, M.T., Luminescence 29, 649 (2014)CrossRef
Satheesh Kumar, R., Ponnusamy, V., Sivakumar, V., Jose, M.T., J. Rare Earth. 32, 927 (2014)CrossRef
Maia, L.J.Q., Ferrari, C.R., Mastelaro, V.R., Hernandas, A.C., Ibanez, A., Solid State Sci. 10, 1835 (2008)CrossRef
Zhang, L., Han, P., Han, Y., Lu, Z., Yang, H., Wang, L., Zhang, Q., J. Alloys Compd. 558, 229 (2013)CrossRef
Wang, T., Zheng, P., Liu, X., Chen, H., Bian, L., Liu, Q.L., J. Lumin. 147, 173 (2014)CrossRef
Grzyb, T., Runowski, M., Szczeszak, A., Lis, S., J. Phys. Chem. C 116, 17188 (2012)CrossRef
Kellendonk, F., Blasse, G., J. Phys. Chem. Solids 43, 481 (1982)CrossRef
Yen, W.M., Shionoya, S., Yamamoto, H., Fundamentals of Phosphors (Taylor and Francis, CRC Press, 2007)Google Scholar
Földvári, I., Beregi, E., Capelletti, R., Baraldi, A., Phys. Status Solidi C 2, 260 (2005)CrossRef
Leask, M.J.M., Maxwell, K.J., Wanklyn, B.M., J. Chem. Phys. 47, 3665 (1967)CrossRef
Kellendonk, F., Blasse, G., J. Chem. Phys. 75, 561 (1981)CrossRef
Kellendonk, F., van den Belt, T., Blasse, G., J. Chem. Phys. 76, 1194 (1982)CrossRef
Ray, S., Patra, A., Pramanik, P., Opt. Mater. 30, 608 (2007)CrossRef
Zhang, N., Guo, C., Jing, H., Jeong, J.H., Spectrochim. Acta A 116, 556 (2013)CrossRef
Blasse, G., Grabmaier, B.C., Luminescence Materials (Springer-Verlag, Berlin, 1994)CrossRefGoogle Scholar