Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T08:42:57.883Z Has data issue: false hasContentIssue false

Thermoelectric generator placed on the human body: system modeling and energy conversion improvements

Published online by Cambridge University Press:  17 September 2010

M. Lossec*
Affiliation:
SATIE, ENS Cachan Bretagne, CNRS, UEB, Avenue Robert Schuman, Campus de Ker Lann, 35170 Bruz, France
B. Multon
Affiliation:
SATIE, ENS Cachan Bretagne, CNRS, UEB, Avenue Robert Schuman, Campus de Ker Lann, 35170 Bruz, France
H. Ben Ahmed
Affiliation:
SATIE, ENS Cachan Bretagne, CNRS, UEB, Avenue Robert Schuman, Campus de Ker Lann, 35170 Bruz, France
C. Goupil
Affiliation:
CRISMAT-CNRT ENSICAEN, 6 boulevard Maréchal Juin, 14050 Caen, France
Get access

Abstract

This paper focuses on the production of electricity using a thermoelectric generator placed on the human body connected to a dc-dc converter. The small difference in temperature between the hot heat source (e.g. the human body, T b = 37 °C) and the cold heat source (e.g. ambient air, T a = 22 °C), associated with a poor quality thermal coupling (mainly with the cold source), leads to a very low temperature gradient at the thermoelectric generator terminals and hence low productivity. Under these use conditions, the present article proposes an analysis of various ways to improve productivity given a surface capture system. Furthermore, we demonstrated, in this particular context, that maximizing the recovered electric power proves to be a different problem from that of maximizing efficiency, e.g. the figure of merit Z. We therefore define a new factor Z E , depending on the physical characteristics of thermoelectric materials, that maximizes electric power in the particular case where the thermal coupling is poor. Finally, this study highlights the benefit of sub-optimization of the power extracted from the thermoelectric generator to further improve efficiency of the overall system. We show that, given the conversion efficiency of the dc-dc converter, the maximum power point of the overall system is no more reached when the output voltage of the thermoelectric generator is equal to half of its electromotive force.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Starner, T., IBM Syst. J. 35, 618 (1996) CrossRef
A.J. Jansen, A.L. Stevels, Human Power, a sustainable option for electronics, in Proc. IEEE Int. Symp. Electron. Environ. (1999), p. 215
D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, London, 1995)
Torfs, T., Leonov, V., Vullers, R.J.M., Sens. Transducers J. 80, 1230 (2007)
Leonov, V., Torfs, T., Van Hoof, C., Vullers, R.J.M., Sens. Transducers J. 107, 165 (2009)
Lineykin, S., Ben-Yaakov, S., IEEE Trans. Ind. Appl. 43, 505 (2007) CrossRef
Godard, C., La Revue 3EI 52, 31 (2008)
Weber, J., Potje-Kamloth, K., Haase, F., Detemple, P., Volklein, F., Doll, T., Sens. Actuat. 132, 325 (2006) CrossRef
Leonov, V., Torfs, T., Fiorini, P., Van Hoof, C., IEEE Sens. J. 7, 650 (2007) CrossRef
P. Viarouge, J.C. Fagundes, F. Tourkhani, H. Le Huy, Comportement thermique et conception des composants magnétiques dans les convertisseurs statiques de fréquence élevée, in Proc. CCGEI'95, Montréal, Québec, Canada, 1995, pp. 582–585
Leonov, V., Vullers, R.J.M., J. Renewable Sustainable Energy 1, 062701 (2009) CrossRef
J.D.M. Rowe, G. Min, Design theory of thermoelectric modules for electrical power generation, in Proc. IEE Sci. Meas. Technol. (1996), Vol. 143, p. 351
T. Hendricks, W.T. Choate, Engineering scoping study of thermoelectric generator systems for industrial waste heat recovery (Industrial Technologies Program, Washington, D.C., US Department of Energy, 2006)