Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T19:15:59.186Z Has data issue: false hasContentIssue false

Boltzmann equation and Monte Carlo analysis of thespatiotemporal electron relaxation in nonisothermal plasmas

Published online by Cambridge University Press:  06 June 2002

D. Loffhagen*
Affiliation:
Institut für Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald, Germany
R. Winkler
Affiliation:
Institut für Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald, Germany
Z. Donkó
Affiliation:
Research Institute for Solid State Physics and Optics, PO Box 49, 1525 Budapest, Hungary
Get access

Abstract

The spatiotemporal relaxation of electrons in spatially one-dimensional plasmas acted upon by electric fields is investigated on the basis of the space- and time-dependent electron Boltzmann equation. The relaxation process is treated using the two-term approximation of an expansion of the electron velocity distribution function in Legendre polynomials. To verify the complex Boltzmann equation approach by a completely independent kinetic method, results for inhomogeneous column-anode plasmas of glow discharges between plane electrodes are compared with corresponding ones obtained by Monte Carlo simulations. The spatiotemporal electron relaxation in argon plasmas, subjected to a space-independent electric field and maintained by a time-independent inflow of electrons at the cathode side of the plasma region, is considered. Starting from steady state at a given electric field, the relaxation process is initiated by a pulse-like change of the electric field strength and is traced until the spatially structured, time-independent state associated to the changed field is reached. The behaviour of the velocity distribution function and macroscopic quantities of the electrons in space and time is analyzed for enlarged and reduced electric field strengths typical of the column region of glow discharges. In particular, the spatiotemporal reformation of plasma structures has been found to progress in two phases, i.e., existing structures in the distribution are driven to merge in wide plasma region first, followed by a formation phase of new spatial structures which are induced by the cathode-sided inflow of electrons. The results for the macroscopic quantities and the isotropic distribution functions obtained by Boltzmann and Monte Carlo calculations agree very well during the spatiotemporal transient process as well as in the new steady state finally reached.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rockwood, S.D., Phys. Rev. A 8, 2348 (1973) CrossRef
J. Wilhelm, R. Winkler, J. Phys. Coll. 40 (C7 Suppl. 7), 251 (1979)
Morgan, W.L., Penetrante, B.M., Comput. Phys. Commun. 58, 127 (1990) CrossRef
Estocq, E., Delouya, G., Bretagne, J., Appl. Phys. B 56, 209 (1993) CrossRef
Loffhagen, D., Winkler, R., J. Comput. Phys. 112, 91 (1994) CrossRef
Loffhagen, D., Winkler, R., J. Phys. D: Appl. Phys. 29, 618 (1996) CrossRef
Hall, C.A., Lowke, J.J., J. Comput. Phys. 19, 297 (1975) CrossRef
Shveigert, V.A., Sov. J. Plasma Phys. 15, 714 (1989)
DiCarlo, J.V., Kushner, M.J., J. Appl. Phys. 66, 5763 (1989) CrossRef
Paulick, T.C., J. Appl. Phys. 67, 2774 (1990) CrossRef
Busch, C., Kortshagen, U., Phys. Rev. E 51, 280 (1995) CrossRef
Sigeneger, F., Winkler, R., Contrib. Plasma Phys. 36, 551 (1996) CrossRef
Uhrlandt, D., Winkler, R., J. Phys. D: Appl. Phys. 29, 115 (1996) CrossRef
Yang, Y., Wu, H., J. Appl. Phys. 80, 3699 (1996) CrossRef
Alves, L.L., Gousset, G., Ferreira, C.M., Phys. Rev. E 55, 890 (1997) CrossRef
Petrov, G., Winkler, R., J. Phys. D: Appl. Phys. 30, 53 (1997) CrossRef
Arndt, S.C., Uhrlandt, D., Winkler, R., Plasma Chem. Plasma Process. 21, 175 (2001) CrossRef
Goedheer, W.J., Meijer, P.M., J. Nucl. Mater. 200, 282 (1993) CrossRef
Mahmoud, M.O.M., Yousfi, M., J. Appl. Phys. 89, 5935 (1997) CrossRef
Loffhagen, D., Winkler, R., J. Phys. D: Appl. Phys. 34, 1355 (2001) CrossRef
Skullerud, H.R., J. Phys. D: Appl. Phys. 1, 1567 (1968) CrossRef
Braglia, G.L., Physica 92C, 91 (1977)
Boeuf, J.P., Pitchford, L.C., IEEE Trans. Plasma Sci. 19, 286 (1991) CrossRef
Fiala, A., Pitchford, L.C., Boeuf, J.P., Phys. Rev. E 49, 5607 (1994) CrossRef
Bogaerts, A., Gijbels, R., Goedheer, W.J., J. Appl. Phys. 78, 2233 (1995) CrossRef
Donkó, Z., Rózsa, K., Tobin, R.C., J. Phys. D: Appl. Phys. 29, 105 (1996) CrossRef
Simko, T., Martisovits, V., Bretagne, J., Gousset, G., Phys. Rev. E 56, 5908 (1997) CrossRef
Maeda, K., Makabe, T., Nakano, N., Bzenic, S., Petrovic, Z.Lj., Phys. Rev. E 55, 5901 (1997) CrossRef
Bzenic, S., Petrovic, Z.Lj., Raspopovic, M., Makabe, T., Jpn. J. Appl. Phys. 38, 6077 (1999) CrossRef
Bogaerts, A., Gijbels, R., Goedheer, W., J. Anal. At. Spectrom. 16, 750 (2001) CrossRef
Winkler, R., Petrov, G., Sigeneger, F., Uhrlandt, D., Plasma Sources Sci. Technol. 6, 118 (1997) CrossRef
Winkler, R., Wilhelm, J., Schüller, V., Beitr. Plasma Phys. 10, 51 (1970) CrossRef
Leyh, H., Loffhagen, D., Winkler, R., Comput. Phys. Commun. 113, 33 (1998) CrossRef
D.U. von Rosenberg, Methods for the Numerical Solution of Partial Differential Equations (American Elsevier, New York, 1969)
Boeuf, J.P., Marode, E., J. Phys. D: Appl. Phys. 15, 2169 (1982) CrossRef
Longo, S., Plasma Sources Sci. Technol. 9, 468 (2000) CrossRef
Penetrante, B.M., Bardsley, J.N., Pitchford, L.C., J. Phys. D: Appl. Phys. 18, 1087 (1985) CrossRef
Yousfi, M., Hennad, A., Alkaa, A., Phys. Rev. E 49, 3264 (1994) CrossRef
A.V. Phelps (2001), ftp://jila.colorado.edu/collision_data/
Sigeneger, F., Winkler, R., Plasma Chem. Plasma Process. 17, 1 (1997) CrossRef