Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T14:49:10.920Z Has data issue: false hasContentIssue false

First principles study of hydrogen doping in anatase TiO2

Published online by Cambridge University Press:  13 August 2014

Mohsen Sotoudeh
Affiliation:
Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Kargar Ave., P.O. Box 14395-547, Tehran, Iran
Mohaddeseh Abbasnejad
Affiliation:
Department of Physics, Shahid Bahonar University of Kerman, P.O. Box 76169-133, Kerman, Iran
Mohammad Reza Mohammadizadeh*
Affiliation:
Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Kargar Ave., P.O. Box 14395-547, Tehran, Iran
*
ae-mail: zadeh@ut.ac.ir
Get access

Abstract

Hydrogen doping in the bulk of anatase TiO2 was studied by density functional theory approach. Our results show that hydrogen atom prefers the interstitial sites which are closer to the oxygen atoms. Investigation of the electronic structures of different hydrogen doped systems indicates the increment of Fermi energy and bond length, affecting the instability of the system. Hydrogen doping in the anatase TiO2 structure injects electron in the lower region of the conduction band, around the Ti states, leading Ti4+ toward Ti3+, while having no effect on the band gap energy value of TiO2. Therefore, the observed hydrogen induced band gap narrowing in TiO2 samples could be due to the structural disorders generated in the hydrogenation process. The hydrogen storage capacity of approximately 3 H atoms per supercell (Ti32O64) is also obtained, which is promising for renewable energy storage issue.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Diebold, U., Surf. Sci. Rep. 48, 53 (2003)CrossRef
Hagfeldt, A., Gräetzel, M., Acc. Chem. Res. 33, 269 (2000)CrossRef
Graetzel, M., Mater. Res. Soc. Bull. 30, 23 (2005)CrossRef
Fujishima, A., Rao, T.N., Tryk, D.A., J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000)CrossRef
Ashkarran, A.A., Mohammadizadeh, M.R., Eur. Phys. J. Appl. Phys. 40, 155 (2007)CrossRef
Ashkarran, A.A., Mohammadizadeh, M.R., Mater. Res. Bull. 43, 522 (2008)CrossRef
Abbasnejad, M., Shojaee, E., Mohammadizadeh, M.R., Alaei, M., Maezono, R., Appl. Phys. Lett. 100, 261902 (2012)CrossRef
Abbasnejad, M., Mohammadizadeh, M.R., Maezono, R., Europhys. Lett. 97, 56003 (2012)CrossRef
Shojaee, E., Abbasnejad, M., Saeedian, M., Mohammadizadeh, M.R., Phys. Rev. B 83, 174302 (2011)CrossRef
Zhang, H., Banfield, J.F., J. Mater. Chem. 8, 2073 (1998)CrossRef
Saeedian, M., Mahjour-Shafie, M., Shojaee, E., Mohammadizadeh, M.R., J. Comput. Theor. Nanosci. 9, 616 (2012)CrossRef
Pourmand, M., Mohammadizadeh, M.R., Curr. Nanosci. 4, 151 (2008)CrossRef
Beltran, A., Sambrano, J.R., Calatayud, M., Sensato, F.R., Andres, J., Surf. Sci. 490, 116 (2001)CrossRef
Carp, O., Huisman, C.L., Reller, A., Prog. Solid State Chem. 32, 33 (2004)CrossRef
Fernândez-Garcia, M., Martinez-Arias, A., Hanson, J.C., Rodriguez, J.A., Chem. Rev. 104, 4063 (2004)CrossRef
Kazemi, M., Mohammadizadeh, M.R., Chem. Eng. Res. Des. 90, 1473 (2012)CrossRef
Kazemi, M., Mohammadizadeh, M.R., Thin Solid Films 519, 6432 (2011)CrossRef
Kazemi, M., Mohammadizadeh, M.R., Appl. Surf. Sci. 257, 3780 (2011)CrossRef
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Chem. Rev. 95, 69 (1995)CrossRef
Kimyagar, S., Mohammadizadeh, M.R., Eur. Phys. J. Appl. Phys. 61, 10303 (2013)CrossRef
Chekini, M., Mohammadizadeh, M.R., Vaez Allaei, S.M., Appl. Surf. Sci. 257, 7179 (2011)CrossRef
Zuo, F., Wang, L., Wu, T., Zhang, Z., Borchardt, D., Feng, P., J. Am. Chem. Soc. 132, 11856 (2010)CrossRef
Chen, X., Burda, C., J. Am. Chem. Soc. 130, 5018 (2008)CrossRef
Di Valentin, C., Pacchioni, G., Selloni, A., J. Phys. Chem. C 113, 20543 (2009)CrossRef
Chen, X., Liu, L., Yu, P.Y., Mao, S., Science 331, 746 (2011)CrossRef
Xia, T., Chen, X., J. Mater. Chem. A 1, 2983 (2013)CrossRef
Xia, T., Zhang, W., Li, W., Oyler, N.A., Liu, G., Chen, X., J. Nano Energy 2, 5 (2013)
Aschauer, U., Selloni, A., Phys. Chem. Chem. Phys. 14, 16595 (2012)CrossRef
Sotoudeh, M., Hashemifar, S.J., Abbasnejad, M., Mohammadizadeh, M.R., AIP Adv. 4, 027129 (2014)CrossRef
Chen, X., Li, C., Gratzel, M., Kostecki, R., Mao, S.S., Chem. Soc. Rev. 41, 7909 (2012)CrossRef
Fujishima, A., Zhang, X., Tryk, D.A., Surf. Sci. Rep. 63, 515 (2008)CrossRef
Hohenberg, P., Kohn, W., Phys. Rev. B 136, 864 (1964)CrossRef
Perdew, J.P., Ziesche, P., Eschrig, H., in Electronic Structure of Solids, , vol. 91 (Akademie Verlag, Berlin, 1991), p. 11Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., J. Phys. Condens. Matter 21, 395502 (2009)CrossRef
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990)CrossRef
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 23, 5188 (1976)CrossRef
Ghanbarian, V., Mohammadizadeh, M.R., Eur. Phys. J. B 61, 309 (2008)CrossRef
Ghanbarian, V., Mohammadizadeh, M.R., Phys. Rev. B 78, 144505 (2008)CrossRef
Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W., Smith, J.V., J. Am. Chem. Soc. 109, 3639 (1987)CrossRef
Shojaee, E., Mohammadizadeh, M.R., J. Phys. Condens. Matter 22, 015401 (2010)CrossRef
Martin, R.M., Electronic Structure (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
Akbarzadeh, H., Mohammadizadeh, M.R., Comput. Mater. Sci. 8, 335 (1997)CrossRef
Pan, H., Zhang, Y.W., Shenoy, V.B., Gao, H., J. Phys. Chem. C 115, 12224 (2011)CrossRef
Na-Phattalung, S., Smith, M.F., Kim, K., Du, M.H., Wei, S.H., Phys. Rev. B 73, 125205 (2006)CrossRef
Liu, L., Yu, P.Y., Chen, X., Mao, S.S., Shen, D.Z., Phys. Rev. Lett. 111, 065505 (2013)CrossRef
Klç, Ç., Zunger, A., Appl. Phys. Lett. 81, 73 (2002)CrossRef
Gong, X.Q., Selloni, A., Vittadini, A., J. Phys. Chem. B 110, 2804 (2006)CrossRef
Bader, R.F.W., Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990)Google Scholar
Tang, W., Sanville, E., Henkelman, G., J. Phys. Condens. Matter 21, 084204 (2009)CrossRef
Nicholas, J.F., Proc. Phys. Soc. A 66, 201 (1953)CrossRef
Tarnawski, Z., Kim-Ngan, N.-T.H., Zakrzewska, K., Drogowska, K., Brudnik, A., Balogh, A.G., Kužel, R., Havela, L., Sechovsky, V., Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025004 (2013)CrossRef