Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T16:44:51.163Z Has data issue: false hasContentIssue false

Iron-catalyst performances in carbon nanotube growthby chemical vapour deposition

Published online by Cambridge University Press:  19 July 2008

S. Santangelo*
Affiliation:
Dipartimento di Meccanica e Materiali, Facoltà di Ingegneria, Università “Mediterranea”, Reggio Calabria, Italy
G. Messina
Affiliation:
Dipartimento di Meccanica e Materiali, Facoltà di Ingegneria, Università “Mediterranea”, Reggio Calabria, Italy
G. Faggio
Affiliation:
Dipartimento di Meccanica e Materiali, Facoltà di Ingegneria, Università “Mediterranea”, Reggio Calabria, Italy
M. Lanza
Affiliation:
CNR, Istituto per i Processi Chimico-Fisici Sez. Messina, Messina, Italy
C. Milone
Affiliation:
Dipartimento di Chimica Industriale e Ingegneria dei Materiali, Facoltà di Ingegneria, Università di Messina, Messina, Italy
A. Pistone
Affiliation:
Dipartimento di Chimica Industriale e Ingegneria dei Materiali, Facoltà di Ingegneria, Università di Messina, Messina, Italy
Get access

Abstract

The efficiency of iron-catalysts in hydrocarbon decomposition, aimed at growth of carbon nanotubes by chemical vapour deposition (CVD), is systematically investigated. The synthesis reaction is carried out at different temperatures (873–1123 K), for various durations (0.5–6.0 h), using diverse precursor gases (C2H6 or C4H10) and catalyst supports (SiO2 or Al2O3). A large variety of experimental conditions is explored by varying amount (0.5–2.0 g), metal load (20 wt.% and 29 wt.%) and annealing temperature (723–973 K) of the catalysts and by considering different gas flowing setups, namely, by changing flow rate (100–240 cc/min) and composition (H2/precursor/He, with He at 0–63%) of the gas mixture, flow-rates and flow-ratio of reactant gases (H2: 0–120 cc/min; Precursor Gas: 15–120 cc/min; H2/PG: 0–3). Iron catalysts encapsulation is shown to be the main factor limiting C yields in the cases considered, and its changes to be responsible for the broad yield variations (20–910 wt.%) observed. The results of analyses, carried out by Raman spectroscopy (RS) and complementary diagnostics techniques, demonstrate the need of accurately tuning the manifold growth parameters, in order to fully benefit of the advantages potentially deriving from a proper choice of precursor gas and catalyst-support material.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, Q., Yan, H., Zhang, J., Liu, Z., Carbon 42, 829 (2004) CrossRefPubMed
Yoon, Y.J., Bae, J.C., Baik, H.K., Cho, S.J., Lee, S.-J., Song, K.M., Myung, N.S., Chem. Phys. Lett. 366, 109 (2002) CrossRef
Ermakova, M.A., Ermakov, D.Y., Chuvilin, A.L., Kuvshinov, G.G., J. Catal. 201, 183 (2001) CrossRef
Navarro López, P., Rodríguez Ramos, I., Guerrero Ruiz, A., Carbon 41, 2509 (2003) CrossRef
Nagaraju, N., Fonseca, A., Konya, Z., Nagy, J.B., J. Molec. Catal. A 181, 57 (2002) CrossRef
Zhong, G., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., Kawarada, H., Chem. Vapor. Depos. 11, 127 (2005). CrossRef
Pérez-Cabero, M., Monzón, A., Rodríguez-Ramos, I., Guerrero-Ruíz, A., Catal. Today 93–95, 681 (2004) CrossRef
Lee, C.J., Park, J., Yu, J.A., Chem. Phys. Lett. 360, 252 (2002) CrossRef
Lee, C.J., Park, J., Huh, Y., Lee, J.Y., Chem. Phys. Lett. 343, 33 (2001) CrossRef
Lee, Y.T., Kim, N.S., Park, J., Han, J.B., Y.S.Choi, J.Y. Lee, Chem. Phys. Lett. 372, 853 (2003) CrossRef
Yao, Y., Falk, L.K.L., Mojan, R.E., Nerushev, O.A., Campbell, E.E.B., J. Mater. Sci. 15, 583 (2004)
Pérez-Cabero, M., Romeo, E., Royo, C., Monzón, A., Guerrero-Ruíz, A., Rodríguez-Ramos, I., J. Catal. 224, 197 (2004) CrossRef
Choi, G.S., Cho, Y.S., Hong, S.Y., Park, J.B., Son, K.H., Kim, D.J., J. Appl. Phys. 91, 3847 (2002) CrossRef
Ci, L., Li, Y., Wei, B., Liang, J., Xu, C., Wu, D., Carbon 38, 1933 (2000) CrossRef
Kuwana, K., Endo, H., Saito, K., Qian, D., Andrews, R., Grulke, E.A., Carbon 43, 253 (2005) CrossRef
Donato, M.G., Messina, G., Santangelo, S., Eur. Phys. J. Appl. Phys. 41, 237 (2008) CrossRef
Donato, M.G., Messina, G., Milone, C., Pistone, A., Santangelo, S., Diam. Relat. Mater. 17, 318 (2008) CrossRef
Donato, M.G., Galvagno, S., Messina, G., Milone, C., Pistone, A., Santangelo, S., Diam. Relat. Mater. 16, 1095 (2007) CrossRef
G. Messina, V. Modafferi, S. Santangelo, P. Tripodi, M.G. Donato, M. Lanza, S. Galvagno, C. Milone, E. Piperopoulos, A. Pistone, Diam. Relat. Mater., in press, doi: 10.1016/ j.diamond.2008.01.060
Santangelo, S., G.Messina, M.G. Donato, M. Lanza, C. Milone, A. Pistone, J. Appl. Phys. 100, 104311 (2006) CrossRef
Yu, Z., Chen, D., Tødtal, B., Holmen, A., Catal. Today 100, 261 (2005) CrossRef
M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Reports 409, 47 (2005)
Ducati, C., Alexandou, I., Chhowalla, M., Amaratunga, G.A., Robertson, J., J. Appl. Phys. 92, 3299 (2002) CrossRef
Ducati, C., Alexandou, I., Chhowalla, M., Robertson, J., Amaratunga, G.A., J. Appl. Phys. 95, 6387 (2004) CrossRef
Jourdain, V., Kanwow, H., Castignolles, M., Loiseau, A., Bernier, P., Chem. Phys. Lett. 364, 27 (2002) CrossRef
Wang, Y.Y., Tang, G.Y., Koeck, F.A.M., Billyde Brown, J.M. Garguilo, R.J. Nemanich, Diam. Relat. Mater. 13, 1287 (2004) CrossRef
Z.Y.Juang, I.P. Chien, J.F. Lai, T.S. Lai, C.H. Tsai, Diam. Relat. Mater. 13, 1203 (2004) CrossRef
Z.Y.Juang, J.F. Lai, C.H.Weng, J.H. Lee, H.J. Lai, T.S. Lai, C.H. Tsai, Diam. Relat. Mater. 13, 2140 (2004) CrossRef
Snoeck, J.-W., Froment, G.F., Fowles, M., J. Catal. 169, 240 (1997) CrossRef
Porro, S., Musso, S., Giorcelli, M., Chiodoni, A., Tagliaferro, A., Physica E 37, 16 (2007) CrossRef