Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T01:20:42.788Z Has data issue: false hasContentIssue false

Molecular dynamics simulations of crystallization of Lennard-Jones nanoparticles

Published online by Cambridge University Press:  11 July 2014

Ta Thi Thuy Huong*
Affiliation:
Department of Physics, Institute of Technology, National University of HochiMinh City, 268 Ly Thuong Kiet Street, District 10, HochiMinh City, Vietnam
Vo Van Hoang
Affiliation:
Department of Physics, Institute of Technology, National University of HochiMinh City, 268 Ly Thuong Kiet Street, District 10, HochiMinh City, Vietnam
Phan Ngoc Khuong Cat
Affiliation:
Department of Physics, Institute of Technology, National University of HochiMinh City, 268 Ly Thuong Kiet Street, District 10, HochiMinh City, Vietnam
Get access

Abstract

Crystallization of Lennard-Jones nanoparticles has been studied by molecular dynamics (MD) simulations. Spherical models with free surface are cooled from the melt to crystalline state. In the cooling process, thermodynamics, structural properties and atomic mechanism of the crystallization are investigated. We found that crystallization in nanoparticles follows the Ostwald’s step rule like that found in the past. Due to free surface contribution, the solidification exhibits non-homogeneous behavior which proceeds in different manners between core and surface: homogeneous crystallization in the core and heterogeneous one in the surface layer of nanoparticles. It is due to the discrepancy between structures of two parts: highly ordered structure dominates in the core region while the surface exhibits defective one with a high fraction of undercoordinated sites. Also, our results are consistent with previous ones about the free surface-induced phenomena.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Erdemir, D., Lee, A.Y., Myerson, A.S., Acc. Chem. Res. 42, 621 (2009)CrossRef
van Santen, R.A., J. Chem. Phys. 88, 5768 (1984)CrossRef
Alexander, S., Mc Tague, J., Phys. Rev. Lett. 41, 702 (1978)CrossRef
ten Wolde, P.R., Ruiz-Montero, M.J., Frenkel, D., J. Chem. Phys. 104, 9932 (1996)CrossRef
ten Wolde, P.R., Ruiz-Montero, M.J., Frenkel, D., Phys. Rev. Lett. 75, 2714 (1995)CrossRef
Mandell, M.J., MacTague, J.P., Rahman, A., J. Chem. Phys. 66, 3070 (1977)CrossRef
Swope, W.C., Andersen, H.C., Phys. Rev. B 41, 7042 (1990)CrossRef
Honeycutt, J.D., Andersen, H.C., J. Phys. Chem. 91, 4950 (1987)CrossRef
Honeycutt, J.D., Andersen, H.C., J. Phys. Chem. 90, 1585 (1986)CrossRef
Shim, J.H., Lee, S.C., Lee, B.J., Suh, J.Y., Cho, Y.W., J. Crys. Grow. 250, 558 (2003)CrossRef
Mendez-Villuendas, E., Bowles, R.K., Phys. Rev. Lett. 98, 185503 (2007)CrossRef
Mandelshtam, V.A., Frantsuzov, P.A., J. Chem. Phys. 124, 204511 (2006)CrossRef
Guan, P., Mckenzie, D.R., Pailthorpe, B.A., J. Phys.: Condens. Matter 8, 8753 (1996)
Yadawa, P.K., Pandey, D.K., Singh, D., Yadav, R.R., Mishra, G., Turk. J. Phys. 34, 23 (2010)
Heinz, H., Vaia, R.A., Farmer, B.L., Naik, R.R., J. Chem. Phys. C 112, 17281 (2008)CrossRef
Avinc, A., Dimitrov, V.I., Comput. Mater. Sci. 13, 211 (1999)CrossRef
Zhen, S., Davies, G.J., Phys. Status Solidi A 78, 595 (1983)CrossRef
Hoang, V.V., Physica B 405, 1908 (2010)CrossRef
Hoang, V.V., Physica B 406, 3653 (2011)CrossRef
Sang, L.V., Hoang, V.V., Hang, N.T.T., Eur. Phys. J. D 67, 64 (2013)CrossRef
Hoang, V.V., Phil. Mag. 91, 3443 (2011)CrossRef
Novikov, V.N., Rossler, E., Malinovsky, V.K., Surovtsev, N.V., Europhys. Lett. 35, 289 (1996)CrossRef
Hoang, V.V., Dong, T.Q., Phys. Rev. B 84, 174204 (2011)CrossRef
Chen, E.T., Barnett, R.N., Landman, U., Phys. Rev. B 40, 924 (1989)CrossRef
Chacón, E., Reinaldo-Falagán, M., Velasco, E., Tarazona, P., Phys. Rev. Lett. 87, 166101 (2001)CrossRef
Hoang, V.V., Eur. Phys. J. D 61, 627 (2011)CrossRef
Chernyshev, A.P., Mat. Lett. 63, 1525 (2009)CrossRef
Hoang, V.V., Dong, T.Q., J. Chem. Phys. 136, 104506 (2012)CrossRef
Ackland, G.J., Jones, A.P., Phys. Rev. B 73, 054104 (2006)CrossRef
Tan, P., Xu, N., Xu, L., Nature Physics 10, 73 (2014)CrossRef
Gránásy, L., Tóth, G.I., Nature Physics 10, 12 (2014)CrossRef
Hoang, V.V., Ganguli, D., Phys. Rep. 518, 81 (2012)CrossRef
Nam, H.-S., Hwang, N.M., Yu, B.D., Yoon, J.-K., Phys. Rev. Lett. 89, 275502 (2002)CrossRef
van de Waals, B.W., Phys. Rev. Lett. 67, 2363 (1991)
Lindemann, F.A., Z. Phys. 11, 609 (1910)
Flores-Ruiz, H.M., Naumis, G.G., J. Chem. Phys. 131, 154501 (2009)CrossRef
Hoang, V.V., J. Phys. Chem. B 115, 6948 (2011)CrossRef
Vach, H., Nano Lett. 11, 5477 (2011)CrossRef