Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T11:34:53.123Z Has data issue: false hasContentIssue false

Production of active species in N2-H2 microwave flowing discharges and afterglows: application to change of paper surface wettability

Published online by Cambridge University Press:  17 June 2014

Mustapha Abdeladim*
Affiliation:
LMSE, Faculté de Génie Electrique, U.S.T.O BP 1505 El Mnaour-Oran, Algerie Laplace – UPS, 118 route de Narbonne, 31062 Toulouse, France
Jean-Philippe Sarrette
Affiliation:
Laplace – UPS, 118 route de Narbonne, 31062 Toulouse, France
André Ricard
Affiliation:
Laplace – UPS, 118 route de Narbonne, 31062 Toulouse, France
Nasredinne Mekkakia Maaza
Affiliation:
LMSE, Faculté de Génie Electrique, U.S.T.O BP 1505 El Mnaour-Oran, Algerie
Get access

Abstract

The study is about the effect of H2 addition into N2 on the density of radiative species in the plasma and in the late afterglow of microwave flowing discharges at low gas pressure (2–10 torr). Intensities of radiative N2(B, C), N2+(B) neutral and ion molecules, H atoms and NH radicals were measured in the plasma and in the late afterglows for the N2(B) state. The results are discussed from the main kinetic reactions in the N2-H2 plasma and afterglow. From the intensity of N2, 1st pos. at 580 nm and after calibration by NO titration, the N-atom density in the afterglow can be determined. The variations of the N-atom density with H2 into N2 in the late afterglow are examined for several gas pressures (2–10 torr) at fixed microwave power (100 W) and flow rate (1 slm). The activity of the late afterglow has been measured on paper surfaces, outlining the influence of a few H2 into N2.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Villeger, S., Cousty, S., Ricard, A., Sixou, M., J. Phys. D: Appl. Phys 36, L6 (2003)CrossRef
Villeger, S., Sarrette, J.P., Rouffet, B., Cousty, S., Ricard, A., Eur. Phys. J. Appl. Phys. 42, 25 (2008)CrossRef
Ricard, A., Oseguera-Pena, J.E., Falk, L., Michel, H., Gantois, M., IEEE Trans. Plasma Sci. 18, 940 (1990)CrossRef
Ricard, A., Gordiets, B.F., Pinheiro, M.J., Ferreira, C.M., Baravian, G., Amorim, J., Bockel, S., Michel, H., Eur. Phys. J. Appl. Phys. 4, 87 (1998)CrossRef
Ricard, A., Tetreault, J., Hubert, J., J. Phys. B. 24, 1115 (1991)CrossRef
Ricard, A., Moisan, M., Moreau, S., J. Phys. D: Appl. Phys. 34, 1203 (2001)CrossRef
Tatarova, E., Dias, F.M., Gordiets, B., Ferreira, C.M., Plasma Source. Sci. Technol. 14, 19 (2005)CrossRef
Ricard, A., Touzeau, M., Moisan, M., J. Physique (Paris) 38, 669 (1977)CrossRef
Garscadden, A., Nagpal, R., Plasma Source. Sci. Technol. 4, 268 (1995)CrossRef
Sperlein, R.F., Golde, M.F., J. Chem. Phys. 95, 8871 (1991)CrossRef
Hovis, F.E., Whitefield, P.D., Chem. Phys Lett. 138, 162 (1987)CrossRef
Gilmore, F.R., Laher, R.R., Espy, P.J., J. Phys. Chem. Ref. Data 21, 1005 (1992)CrossRef
Mavadat, M., Ricard, A., Sarra-Bournet, C., Laroche, G., J. Phys. D: Appl. Phys 44, 155207 (2011)CrossRef
Vesel, A., Junkar, I., Cvelbar, U., Kovac, J., Mozetic, M., Surf. Interface Anal. 40, 1444 (2008)CrossRef