Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T15:46:57.582Z Has data issue: false hasContentIssue false

Resolution of Maxwell's equations by the spectral moments method. Global approach

Published online by Cambridge University Press:  17 July 2003

C. Benoit*
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR 5581, Université Montpellier 2, 34095 Montpellier Cedex 05, France
G. Poussigue
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR 5581, Université Montpellier 2, 34095 Montpellier Cedex 05, France
Get access

Abstract

We present a systematic analysis, within the scope of electromagnetic theory, of the spectral moments method (SMM) and develop several ways to compute the linear response of any type of system. We show that the method can be used in diffraction studies regardless of the number, nature and form of the diffracting objects. Multiple diffraction is naturally taken into account in the computation. The method can thus be applied to determine propagation through any type of media. It is based on the computation of Green functions, solutions of discretized Maxwell's equations. Fourier transforms of Green functions are developed in continued fraction. Two approaches will be presented. In the first “global” approach, all space is discretized, the coefficients of continued fractions are computed directly from the dynamic matrix obtained by the discretization of Maxwell's equations and from sources and receivers. In the second “local” approach, only the diffracting system is discretized. This paper is devoted to the global approach. We study two important problems in electromagnetism, i.e. propagation of a plane wave through a heterogeneous layer and scattering of an isolated object. We present two computation techniques for plane wave propagation: one uses a small grid, is very rapid but the results are approximate; the other uses a large grid, is less rapid but the results are exact. We show that computing the reflectivity and/or transmissivity of photonic lattices is now a very simple problem. For scattering, we mainly report a series of tests on some canonical systems, such as cylinders or spheres, showing that SMM results are in very good agreement with the analytical results. Several types of absorbing boundary conditions are tested. We report results on backscattering cross-sections and the impulsional response of different one-, two- and three-dimensional systems.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.C. Maxwell, A Treatise on Electricity and Magnetism (Macmillan and Co, Oxford 1873), Vols. 1, 2
Lord Rayleigh, Philos. Mag. XII, 81 (1881); Philos. Mag. XXXVI, 365 (1918)
Mie, G., Ann. Phys. 25, 377 (1908) CrossRef
M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1956)
G.T. Ruck, D.E. Barrick, W.D. Stuart, C.K. Krichbaum, Radar Cross Section Handbook (New-York Plenum Press, 1970), Vol. 1
J.A. Kong, PIER1 - Progress in Electromagnetics Research (Elsevier N.Y., 1989)
L. Lafait, S. Berthier, in Nanophase Materials: Synthesis-Properties-Applications edited by G.C. Hadjipanayis, R.W. Siegel Kluwer (Academic Publishers Boston, London, 1994)
J. Lam, in Recent Advances in Electromagnetics Theory edited by H.N. Kritikos, D.L. Jaggard (Springer-Verlag, New-York, 1990)
C.W. Chew, Waves and Field in inhomogeneous Media (Van Nostrand Reinhold, New-York, 1990)
Defos du, M. Rau, F. Pessan, G. Ruffie, V. Vignéras-Lefevre, J.P. Parneix, Eur. Phys. J. AP 1, 45 (1998) CrossRef
A. Taflove, K.R. Umashankar, Finite element and Finite Difference Methods in Electromagnetic Scattering, Pier2, edited by M.A. Morgan, (Elsevier, 1990)
J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons Inc., New York, 1993)
Mur, G., IEEE Trans. Electromagn. Compat. 23, 377 (1981) CrossRef
Berenger, J.P., J. Comput. Phys. 114, 185 (1994); 127, 363 (1996) CrossRef
Katz, D.S., Thiele, E.T., Taflove, A., IEEE Microwave Guided Wave Lett. 10, 268 (1994) CrossRef
R.F. Harrington, Field computation by moment methods (Macmillan, 1968)
J.J.H. Wang, Generalized Moments Methods in Electromagnetics (John Wiley and Sons Inc., New-York, 1991)
S. Berthier, Optique des milieux composites (Polytechnica, Paris, 1993)
Bergman, D.J., Stroud, D.S., Solid State Phys. 46, 147 (1990) CrossRef
Lorentz, H.A., Wiedem. Ann. 9, 641 (1880) CrossRef
Maxwell-Garnett, J.C., Philos. Trans. Roy. Soc. London 203, 385 (1904); 205, 237 (1906) CrossRef
Niklasson, G.A., Granqvist, C.G., J. Appl. Phys. 55, 3382 (1984) CrossRef
Bruggeman, D.A.G., Ann. Phys. (Leipz.) 24, 636 (1935) CrossRef
Maheu, B., Letoulouzan, J.N., Gouesbet, G., Appl. Opt. 23, 3353 (1984) CrossRef
Berthier, S., Driss-Khodja, K., Lafait, J., Europhys. Lett. 4, 1415 (1987) CrossRef
Berthier, S., K.Driss-Khodja, Physica A 157, 356 (1989) CrossRef
Yagil, Y., Deutscher, G., Appl. Phys. Lett. 52, 373 (1988) CrossRef
Gadenne, P., Yagil, Y., Deutscher, G., Physica A 157, 279 (1989) CrossRef
De Vries, H., Acta Cryst. 4, 219 (1951) CrossRef
Anderson, M.H., Jones, J.C., Raynes, E.P., Towler, M.J., J. Phys. D: Appl. Phys. 24, 338 (1991) CrossRef
Jones, R.C., J. Opt. Soc. Am. 31, 488 (1941) CrossRef
Taupin, J., J. Phys. 30, 32 (1969)
Berreman, D.W., Scheffer, T.J., Phys. Rev. Lett. 25, 577 (1970) CrossRef
S. Bassiri, in Recent Advances in Electromagnetics Theory, edited by H.N. Kritikos, D.L. Jaggard (Springer-Verlag, New-York, 1990)
J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, 1995)
Sakoda, K., Phys. Rev. B 52, 8992 (1995) CrossRef
Pendry, J.B., J. Phys.-Cond. Matter 8, 1085 (1996) CrossRef
Cassagne, D., Jouanin, C., Bertho, D., Appl. Phys. Lett. 70, 289 (1997) CrossRef
P.M. Morse, H. Feshbach, Methods of Theoritical Physics (McGraw-Hill Book Company, New-York, 1953), Vols. 1, 2
S.K. Cho, Electromagnetics Scattering (Springer-Verlag, New-York, 1990)
Warnick, K.F., Arnold, D.V., J. Electromagn. Waves Appl. 10, 427 (1996) CrossRef
J.D. Jackson, Classical Electrodynamics (J. Wiley, New-York, 1962)
Benoit, C., Poussigue, G., Rouseau, V., Lakhliai, Z., Chenouni, C., Modelling Simul. Mater. Eng. 3, 161 (1995) CrossRef
Benoit, C., Royer, E., Poussigue, G., J. Phys.-Cond. Matter 4, 3125 (1992) CrossRef
Gaspard, J.-P., Cyrot-Lackmann, F., J. Phys. C: Solid State Phys. 6, 3077 (1973) CrossRef
Lambin, P., Gaspard, J.-P., Phys. Rev. B 26, 4356 (1982) CrossRef
Montroll, E.W., J. Chem. Phys. 10, 218 (1942) CrossRef
Blumstein, C., Wheeler, J.C., Phys. Rev. B 8, 1764 (1973) CrossRef
Jurczek, E., Phys. Rev. B 32, 4208 (1985) CrossRef
Lanczos, C., J. Res. Nat. Bur. Stand. 45, 255 (1950) CrossRef
Haydock, R., Heine, Y., Kelly, M., J. Phys. C: Solid State Phys. 5, 2845 (1972) CrossRef
T.J. Stieltjes, Ann. École Normale, 3e série 1, 409 (1884)
Stieltjes, T.J., Ann. Fac. Sci. Toulouse 8, 1 (1894) CrossRef
Benoit, C., J. Phys. C: Solid State Phys. 20, 765 (1987) CrossRef
Benoit, C., Poussigue, G., Assaf, A., J. Phys.-Cond. Matter 4, 3153 (1992) CrossRef
E. Royer, C. Benoit, G. Poussigue, in High Performance Computing II, edited by M. Durand, F. El Dabaghi (Elsevier Science Publishers B.V., North Holland, 1991)
Royer, E., Benoit, C., Poussigue, G., J. Phys.-Cond. Matter 4, 561 (1992) CrossRef
Rahmani, A., Benoit, C., Poussigue, G., J. Phys.-Cond. Matter 6, 1483 (1994) CrossRef
Rahmani, A., Benoit, C., Poussigue, G., J. Phys.-Cond. Matter 7, 8903 (1995) CrossRef
Poussigue, G., Benoit, C., Sauvajol, J.-L., Lere-Porte, J.-P., Chorro, C., J. Phys.-Cond. Matter 3, 8803 (1991) CrossRef
Benoit, C., Poussigue, G., Azougarh, A., J. Phys.-Cond. Matter 2, 2519 (1990) CrossRef
Poussigue, G., Benoit, C., de Boissieu, M., Currat, R., J. Phys.-Cond. Matter 6, 659 (1994) CrossRef
Benoit, C., J. Phys.-Cond. Matter 6, 3137 (1994) CrossRef
Lakhliai, Z., Chenouni, D., Benoit, C., Poussigue, G., Brunet, M., Quentel, S., Sakout, A., Modelling Simul. Mater. Eng. 4, 597 (1996) CrossRef
Chenouni, D., Lakhliai, Z., Benoit, C., Poussigue, G., Sakout, A., IEEE Trans. Antennas and Propagat. 46, 165 (1998) CrossRef
G. Poussigue, C. Benoit, D. Chenouni, Z. Lakhliai, C.R. Acad. Sci. Paris 322, Série II b, 733 (1996)
Bachelier, E., Poussigue, G., Borderies, P., Benoit, C., IEEE Microwave Guided Wave Lett. 7, 396 (1997) CrossRef
Rols, S., Benoit, C., Poussigue, G., Bachelier, E., Borderies, P., Modelling Simul. Mater. Eng. 6, 111 (1998) CrossRef
Dupuis, M., Prog. Theor. Phys. 37, 502 (1967) CrossRef
Scheunders, P., Naudts, J., Z. Phys. B 80, 423 (1990) CrossRef
Rousseau, V., Benoit, C., Bayer, R., Cuer, M., Poussigue, G., Geophysics 61, 1269 (1996) CrossRef
Yee, K.S., IEEE Trans. Antennas Propagat. 14, 302 (1969)
C. Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique Quantique (Hermann, Paris, 1992)
E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New-York, 1966)
Hamberger, H., Math. Ann. 81, 235 (1920) CrossRef
P.L. Tchebychef, J. Math. II e série TIII, 289 (1858)
N. Akhieser, The Classical Moment Problem (Oliver and Boyd, Edinburg, 1965)
J.A. Shohat, J.D. Tamarkin, The Problem of Moment, Math. Surveys Am. Math. Soc., Vol. 1 (1963)
H.S. Wall, Analytic theory of continued fractions (D. Van Nostrand Company, 1948)
W.B. Jones, W.J. Thron, Continued Fractions - Analytic Theory and Applications, Encyclopedia of Mathematics and its applications, Vol. II, edited by Addison (Wesley Publishing Company, 1980)
Turchi, P., Ducastelle, F., Treglia, G., J. Phys. C: Solid State Phys. 15, 2891 (1982) CrossRef
F.R. Gantmacher, Theorie des matrices (Gabay, Paris, 1966)
J.P. Gaspard, P.H. Lambin (and other papers therein) in The Recursion Method and its Applications, edited by D.G. Pettifor, D.L. Weaire (Springer Verlag, Berlin, 1984)
Arnoldi, W.E., Quart. Appl. Math. 9, 17 (1951) CrossRef
Saad, Y., Lin. Alg. Appl. 34, 269 (1980) CrossRef
M.A. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965)
Saad, Y., SIAM J. Num. Anal. 19, 470 (1982) CrossRef
M.F. Catedra, R.P. Torres, J. Basterrechea, E. Gago, The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics (Artech House, Boston, 1996)
For details of the demonstration contact the authors
C. Benoit, G. Poussigue, Eur. Phys. J. AP, to be published
Hubral, P., Tygel, M., Geophysics 54, 654 (1989) CrossRef
Bayliss, A., Turkel, E., Commun. Pure Appl. Math. 23, 707 (1980) CrossRef
Mei, K.K., Pous, R., Chen, Z., Liuand, Y.W., Prouty, D., IEEE Trans. Antennas Propagat. 42, 320 (1989) CrossRef
Engquist, B., Majda, A., Math. Comput. 32, 313 (1977)
Higdon, R.L., Math. Comput. 49, 65 (1987) CrossRef
Grote, M.J., Keller, J.B., J. Comput. Phys. 127, 52 (1996); 139, 327 (1998) CrossRef
C. Brezinski, History of Continued Fractions and Padé Approximants (Springer Verlag, Berlin, 1991)