Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T11:40:16.234Z Has data issue: false hasContentIssue false

Early skeletal fossils

Published online by Cambridge University Press:  21 July 2017

Stefan Bengtson*
Affiliation:
Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
Get access

Abstract

The Precambrian-Cambrian transition saw the burgeoning of diverse skeletal organisms (“small shelly fossils”), represented in the fossil record by spicules, tubes, tests, conchs, shells, and a variety of sclerites and ossicles. Whereas calcareous biomineralization as such may have been facilitated by changes in ocean chemistry at this time, the utilization of biominerals in mineralized skeletons is a different process. The massive appearance of skeletons is most likely an epiphenomenon of the general radiation of body plans and tissues. The “choice” of biominerals (mainly calcium carbonates, calcium phosphates, and silica) may reflect the environmental conditions under which the particular skeleton first evolved.

Type
Research Article
Copyright
Copyright © 2004 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arp, G., Remier, A., and Reitner, J. 2001. Photosynthesis-indusce biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292:17011704.CrossRefGoogle ScholarPubMed
Azmi, R. J. 1983. Microfauna and age of the Lower Tal phosphorite of Mussoorie Syncline, Garhwal Lesser Himalaya, India. Himalayan Geology, 11:373409.Google Scholar
Bengtson, S. 1970. The Lower Cambrian fossil Tommotia . Lethaia, 3(4):363392.Google Scholar
Bengtson, S. 1977. Aspects of problematic fossils in the early Palaeozoic. Acta Universitatis Upsaliensis. Abstracts of Uppsala Dissertations from the Faculty of Science, 415:171.Google Scholar
Bengtson, S. 1986. The problem of the Problematica., p. 311. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Volume 5. Oxford U.P., New York.Google Scholar
Bengtson, S. 1992. The cap-shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs. Lethaia, 25:401420.Google Scholar
Bengtson, S. 1994. The advent of animal skeletons., p. 412425. In Bengtson, S. (ed.), Early Life on Earth. Nobel Symposium 84. Columbia University Press, New York, N. Y. Google Scholar
Bengtson, S., and Conway Morris, S. 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia . Lethaia, 17(4):307329.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists, 9:1364.Google Scholar
Bengtson, S., and Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences, 20(4):525536.Google Scholar
Bengtson, S., and Hou, X. 2001. The integument of Cambrian chancelloriids. Acta Palaeontologica Polonica, 46(1): 122.Google Scholar
Bengtson, S., and Missarzhevsky, V. V. 1981. Coeloscleritophora - a major group of enigmatic Cambrian metazoans., p. 1921. In Taylor, M. E. (ed.), Short papers for the Second International Symposium on the Cambrian System 1981.Google Scholar
Bhatt, D. K., Mamgain, V. D., and Misra, R. S. 1985. Small shelly fossils of early Cambrian (Tommotian) age from chert-phosphorite member, Tal Formation, Mussoorie Syncline, Lesser Himalaya, India, and their chronostratigraphic evaluation. Journal of the Palaeontological Society of India, 30:92102.Google Scholar
Billings, E. 1872. On some fossils from the primordial rocks of Newfoundland. Canadian Naturalist, 6(4):465479.Google Scholar
Bischoff, G. C. O. 1976. Dailyatia, a new genus of the Tommotiidae from Cambrian strata of SE. Australia (Crustacea, Cirripedia). Senckenbergiana lethaea, 57(1): 133.Google Scholar
Brasier, M., Green, O., and Shields, G. 1997. Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, 25(4):303306.Google Scholar
Brasier, M. D. 1984. Microfossils and small shelly fossils from the Lower Cambrian Hyolithes Limestone at Nuneaton, English Midlands. Geological Magazine, 121(3):229253.CrossRefGoogle Scholar
Brasier, M. D., and Singh, P. 1987. Microfossils and Precambrian-Cambrian boundary stratigraphy at Maldeota, Lesser Himalayas. Geological Magazine, 124(4):323345.Google Scholar
Brennan, S. T., Lowenstein, T. K., and Horita, J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32(6):473476.Google Scholar
Brock, G. A., and Cooper, B. J. 1993. Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South Australia. Journal of Paleontology, 67(5):758787.Google Scholar
Chen, J.-Y., Zhou, G.-Q. and Ramsköld, L. 1995. The Cambrian lobopodian Microdictyon sinicum . Bulletin of the National Museum of Natural Science, 5:193.Google Scholar
Cloud, P. E. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 2(4):322350.CrossRefGoogle ScholarPubMed
Cloud, P. E. Jr. 1968. Pre-metazoan evolution and the origins of the Metazoa., p. 172. In Drake, E. T. (ed.), Evolution and Environment. Yale University Press, New Haven, Conn. Google Scholar
Cobbold, E. S. 1921. The Cambrian horizons of Comley (Shropshire) and their Brachiopoda, Pteropoda, Gasteropoda, etc. Quarternary Journal of the Geological Society, 76(304):325386.Google Scholar
Cobbold, E. S. 1935. Lower Cambrian fauna from Hérault, France. Annals and Magazine of Natural History, Series 10„ 16:2548.CrossRefGoogle Scholar
Conway Morris, S., and Fritz, W. H. 1980. Shelly microfossils near the Precambrian-Cambrian boundary, Mackenzie Mountains, northwestern Canada. Nature, 286(577):381384.Google Scholar
Conway Morris, S., and Peel, J. S. 1990. Articulated halkieriids from the Lower Cambrian of north Greenland. Nature, 345:802805.CrossRefGoogle Scholar
Conway Morris, S., and Peel, J. S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London B, 347:305358.Google Scholar
Degens, E. T. 1979. Why do organisms calcify? Chem. Geol., 25:257269.Google Scholar
Degens, E. T., Kaźmierczak, J., and Ittekott, V. 1985. Cellular response to Ca2+ stress and its geological implications. Acta Palaeontologica Polonica, 30(3-4): 115135.Google Scholar
Durham, J. W. 1971. The fossil record and the origin of the Deuterostomata. Proceedings of the North American Paleontological Convention, Part H,: 11041132.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: An alternative to phyletic gradualism., p. 82115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper & Co., San Francisco, CA.Google Scholar
Esakova, N. V., and Zhegallo, E. A. 1996. Biostratigrafiya i fauna nizhnego kembriya Mongolii. [Biostratigraphy and fauna of the Lower Cambrian in Mongolia.], p. 1214. In Rozanov, A. Y. (ed.), Trudy Sovmestnoj rossijsko-mongol'skoj paleontologicheskoj ehkspeditsii.Volume 46. Nauka, Moscow.Google Scholar
Evans, K. R., and Rowell, A. J. 1990. Small shelly fossils from Antarctica; an Early Cambrian faunal connection with Australia. Journal of Paleontology, 64(5):692700.Google Scholar
Fonin, V. D., and Smirnova, T. N. 1967. Novaya gruppa problematicheskikh rannekembrijskikh organizmov i nekotorye metody ikh preparirovaniya. [A new group of problematic Early Cambrian organisms and some methods of preparing them.]. Paleontologicheskij Zhurnal, 1967(2):1527.Google Scholar
Gehling, J., and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70(2):185195.Google Scholar
Glaessner, M. F. 1972. Precambrian palaeozoology., p. 4352. In Jones, J. B. and McGowran, B. (eds.), Stratigraphic Problems of the Later Precambrian and Early Cambrian. Volume 1.Google Scholar
Gould, S. J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. Norton, New York, N.Y., 347 p.Google Scholar
Gould, S. J. 1990. Enigmas of the small shellies. Natural History, 1990(10):617.Google Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290(A):261294.Google Scholar
Gravestock, D. I., Alexander, E. M., Demidenko, Y. E., Esakova, N. V., Holmer, L. E., Jago, J. B., Lin, T.-R. Melnikova, L. M., Parkhaev, P. Y., Rozanov, A. Y., Ushatinskaya, G. T., Zang, W.-L. Zhegallo, E. A., and Zhuravlev, A. Y. 2001. The Cambrian biostratigraphy of the Stansbury Basin, South Australia. Transactions of the Palaeontological Institute of the Russian Academy of Sciences, 282:1341.Google Scholar
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26(3):334359.Google Scholar
Hamdi, B. 1989. Stratigraphy and palaeontology of the Late Precambrian to Early Cambrian in the Alborz Mountains, northern Iran. Geological Survey of Iran Report, 59:141.Google Scholar
Hamdi, B., Brasier, M. D., and Jiang, Z. 1989. Earliest skeletal fossils from Precambrian-Cambrian boundary strata, Elburz Mountains, Iran. Geological Magazine, 126:283289.Google Scholar
Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire/England. Palaeontographica A, 198(1-3):41100.Google Scholar
Ivantsov, A. Y. 1990. Novye dannye po ul'trastrukture sabelliditid (Pogonophora?). [New data on the ultrastructure of sabelliditis (Pogonophora?).]. Paleontologicheskij Zhurnal, 1990(4): 125128.Google Scholar
Ivantsov, A. Y., and Wrona, R. 2004. Articulated palaeoscolecid sclerite arrays from the Lower Cambrian of eastern Siberia. Acta Geologica Polonica, 54(1):122.Google Scholar
Kaźmierczak, J., Ittekott, V., and Degens, E. T. 1985. Biocalcification through time: environmental challenge and cellular response. Paläontologische Zeitschrift, 59(1/2):1533.Google Scholar
Kempe, S., Kaźmierczak, J., and Degens, E. T. 1989. The soda ocean concept and its bearing on biotic evolution., p. 2943. In Crick, R. E. (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Plenum, New York, N. Y. Google Scholar
Kempe, S., and Kaźmierczak, J. 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes., p. 61117. In Doumenge, F., Allemand, D., and Toulemont, A. (eds.), Past and Present Biomineralization Processes. Musée Océanographique, Monaco.Google Scholar
Kerber, M. 1988. Mikrofossilien aus unterkambrischen Gesteinen der Montagne Noire, Frankreich. Palaeontographica A, 202(5-6):127203.Google Scholar
Landing, E. 1984. Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica). Journal of Paleontology, 58(6):13801398.Google Scholar
Landing, E. 1988. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology, 62(5):661695.Google Scholar
Landing, E., and Bartowski, K. E. 1996. Oldest shelly fossils from the Taconic allochthon and late Early Cambrian sea-levels in eastern Laurentia. Journal of Paleontology, 70(5):741761.Google Scholar
Landing, E., Myrow, P., Benus, A. P., and Narbonne, G. M. 1989. The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology, 63(6):739769.CrossRefGoogle Scholar
Laurie, J. R. 1986. Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia. Alcheringa, 10(3-4):431454.Google Scholar
Lowenstam, H. A., and Weiner, S. 1989. On Biomineralization. Oxford University Press, New York, N.Y., 1324 p.Google Scholar
Luo, H., Jiang, Z. Wu, X. Song, X. Ouyang, L. and Et Al. 1982. [The Sinian-Cambrian Boundary in Eastern Yunnan, China.]. Yunnan People's Publishing House, Kunming, 1265 p.Google Scholar
Matthews, S. C., and Missarzhevsky, V. V. 1975. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. Journal of the Geological Society, 131:289304.Google Scholar
Mens, K. 2003. Early Cambrian tubular fossils of the genus Onuphionella from Estonia. Proceedings of the Estonian Academy of Sciences, 52(2):8797.Google Scholar
Missarzhevsky, V. V. 1977. Konodonty (?) i fosfatnye problematiki kembrii Mongolii i Sibiri. [Conodonts (?) and phosphatic problematica from the Cambrian of Mongolia and Siberia.], p. 1019. In Tatarinov, L. P. (ed.), Bespozvonochnye paleozoya Mongolii. Nauka, Moscow.Google Scholar
Missarzhevsky, V. V., and Mambetov, A. M. 1981. Stratigrafiya i fauna pogranichnykh sloev kembriya i dokembriya Malogo Karatau. [Stratigraphy and fauna of the Precambrian-Cambrian boundary beds in Malyj Karatau.]. Trudy Geologicheskogo Instituta AN SSSR, 326:192.Google Scholar
Mostler, H. 1980. Zur Mikrofauna des Unterkambriums in der Haziraformation - Hazara, Pakistan. Annalen des Naturhistorischen Museums in Wien, 83:245257.Google Scholar
Müller, K. J., and Hinz-Schallreuter, I. 1993. Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology, 36(3):549592.Google Scholar
Poulsen, C. 1967. Fossils from the Lower Cambrian of Bornholm. Matematisk-Fysiske Meddelelser, Kongelige Danske Videnskabernes Selskab„ 36(2):148.Google Scholar
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Ramsköld, L. 1992. Homologies in Cambrian Onychophora. Lethaia, 25(4):443460.Google Scholar
Ramsköld, L., and Hou, X. 1991. New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 351(6323):225228.Google Scholar
Riding, R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature, 299:814815.Google Scholar
Riding, R. 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47(Suppl.):179214.Google Scholar
Riding, R., and Voronova, L. G. 1982. Calcified cyanophytes and the Precambrian-Cambrian transition. Naturwissenschaften, 69:498499.Google Scholar
Rigby, J. K. 1978. Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in western Utah. Journal of Paleontology, 52(6):13251345.Google Scholar
Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2:1105.Google Scholar
Rigby, J. K., and Collins, D. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. ROM Contributions in Science, 1:1155.Google Scholar
Rozanov, A. Y., and Missarzhevsky, V. V. 1966. Biostratigrafiya i fauna nizhnikh gorizontov kembriya. [Biostratigraphy and fauna of the lower horizons of the Cambrian.]. Trudy Geologicheskogo Instituta AN SSSR, 148:1125.Google Scholar
Rozanov, A. Y., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidorov, A. D. 1969. Tommotskij yarus i problema nizhnej granitsy kembriya. [The Tommotian Stage and the problem of the lower boundary of the Cambrian.]. Trudy Geologicheskogo Instituta AN SSSR, 206:1380.Google Scholar
Shaler, N. S., and Foerste, A. F. 1888. Preliminary description of North Attleborough fossils. Bulletin of the Museum of Comparative Zoölogy, 16:2741.Google Scholar
Signor, P. W., Mount, J. F., and Onken, B. R. 1987. A pre-trilobite shelly fauna from the White-Inyo region of eastern California and western Nevada. Journal of Paleontology, 61(3):425438.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia UP, New York, NY, 434 p.Google Scholar
Stanley, S. M. 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. American Journal of Science, 276(1):5676.Google Scholar
Steiner, M., Li, G., Qian, Y., and Zhu, M. 2004. Lower Cambrian Small Shelly Fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios, 37:259275.Google Scholar
Thomas, R. D. K., and Reif, W.-E. 1993. The skeleton space: A finite set of organic designs. Evolution, 47(2):341360.Google Scholar
Thomas, R. D. K., Shearman, R. M., and Stewart, C. W. 2000. Evolutionary exploitation of design options by the first animals with hard skeletons. Science, 288(5469): 12391242.Google Scholar
Voronin, Y. I., Voronova, L. G., Grigor'Eva, N. V., Drozdova, N. A., Zhegallo, E. A., Zhuravlev, A. Y., Ragozina, A. L., and Et Al. 1982. Granitsa dokembriya i kembriya v geosinklinal'nykh oblastyakh (opornyj razrez Salany-Gol, MNR). [The Precambrian-Cambrian boundary in the geosynclinal regions (reference section Salany-Gol, MNR).], p. 1150, Trudy Sovmestnoj sovetsko-mongol'skoj paleontologicheskoj ehkspeditsii. Volume 18. Nauka, Moscow.Google Scholar
Walcott, C. D. 1920. Cambrian geology and paleontology IV:6 - Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67(6):261364.Google Scholar
Warén, A., Bengtson, S., Goffredi, S. K., and Van Dover, C. L. 2003. A hot-vent gastropod with iron sulfide dermal sclerites. Science, 302:1007.Google Scholar
Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296:23832386.Google Scholar
Wrona, R. 2003. Early Cambrian molluscs from glacial erratics of King George Island, West Antarctica. Polish Polar Research, 24(3-4):181216.Google Scholar
Wrona, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49(1):1356.Google Scholar
Yin, J., Ding, L. He, T. Li, S. and Shen, L. 1980. [The Palaeontology and Sedimentary Environment of the Sinian System in Emei-Ganluo Area, Sichuan.], 1210 p.Google Scholar