Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T19:17:04.942Z Has data issue: false hasContentIssue false

Life History and Stable Isotope Geochemistry of Planktonic Foraminifera

Published online by Cambridge University Press:  21 July 2017

Howard J. Spero*
Affiliation:
Department of Geology, University of California, Davis, CA 95616, USA
Get access

Extract

Application of planktonic foraminifera to micropaleontological, paleoceanographic and paleoclimatic research has enjoyed more than 150 years of activity. During the first century, foraminifera were used primarily for biostratigraphic analysis. Although fossil shells were recognized from beach sands and deep sea sediments as early as 1826 (d'Orbigny, 1826; Parker and Jones, 1865), it wasn't until Owen (1867) and the scientific results of the Challenger expedition (Brady, 1884) that the planktonic life habitat of these marine protozoans was clearly established. By the early 20th century, researchers were studying the biology of planktonic foraminifera at the cellular level (Rhumbler, 1901; Le Calvez, 1936), and linking their distributional patterns to regions of the ocean surface (Lohmann, 1920; Schott, 1935).

Type
Research Article
Copyright
Copyright © 1998 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adshead, P.C. 1967. Collection and laboratory maintenance of living planktonic foraminifera. Micropaleontology 13 (1):3240.CrossRefGoogle Scholar
Alldredge, A.L., and Jones, B.M. 1973. Hastigerina pelagica . Foraminiferal habitat for planktonic dinoflagellates. Mar. Biol. 22:131135.Google Scholar
Anderson, O.R., and , A.W.H. 1976. The ultrastructure of a planktonic foraminifera, Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates. J. Foram. Res. 6(1):121.Google Scholar
, A.W.H. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. pp. 1100 in Ramsay, A. T. S. (ed.), Oceanic Micropaleontology. Academic Press, London.Google Scholar
, A.W.H. 1980. Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Mar. Micropaleontol. 5:283310.Google Scholar
, A.W.H., et al., 1983. Sequence of morphological and cytoplasmic changes during gametogenesis in the planktonic foraminifer Globigerinoides sacculifer (Brady). Micropaleontology 29 (3):310325.Google Scholar
, A.W.H., et al., 1985. Standing stock, vertical distribution and flux of planktonic foraminifera in the Panama Basin. Mar. Micropaleontol. 9:307333.Google Scholar
, A.W.H., Caron, D.A., and Anderson, O.R. 1981. Effects of feeding frequency on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture. J. mar. biol. Ass. U.K. 61:257277.Google Scholar
, A.W.H., et al., 1977. Laboratory and field observations of living planktonic foraminifera. Micropaleontology 23:155179.Google Scholar
, A.W.H., Spero, H.J., and Anderson, O.R. 1982. Effects of symbiont elimination and reinfection on the life processes of the planktonic foraminifer Globigerinoides sacculifer . Mar. Biol. 70:7386.Google Scholar
, A.W.H., and Van Donk, J. 1971. Oxygen-18 studies of recent planktonic foraminifera. Science 173:167168.Google Scholar
Bemis, B.E., et al., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13 (2): 150160.CrossRefGoogle Scholar
Bemis, B.E., et al., in review. Influence of temperature and phosphate on the carbon isotopic composition of planktonic foraminifera. Mar. Micropaleontol.Google Scholar
Bijma, J., Erez, J., and Hemleben, C. 1990. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. J. Foram. Res. 20 (2): 117127.CrossRefGoogle Scholar
Bijma, J., and Hemleben, C. 1994. Population dynamics of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea. Deep-Sea Res. I 41 (3):485510.Google Scholar
Bijma, J., et al., in press. Experimental determination of the ontogenetic stable isotope variability in two morphotypes of Globigerinella siphonifera (d'Orbigny). Mar. Micropaleontol.Google Scholar
Billups, K., and Spero, H.J. 1995. Relationship between shell size, thickness and stable isotopes in individual planktonic foraminifera from two equatorial Atlantic cores. J. Foram. Res. 25 (1):2437.Google Scholar
Billups, K., and Spero, H.J. 1996. Reconstructing the stable isotope geochemistry and paleotemperatures of the equatorial Atlantic during the last 150,000 years: Results from individual foraminifera. Paleoceanography 11 (2):217238.CrossRefGoogle Scholar
Brady, H.B. 1884. Report on the Foraminifera dredged by H.M.S. Challenger during the years 1873–1876. Vol. 9, Rept. Voy. Challenger, Zool.Google Scholar
Broecker, W.S. 1986. Oxygen isotope constraints on surface ocean temperatures. Quat. Res. 26:121134.Google Scholar
Brummer, G-J. A., Hemleben, C., and Spindler, M. 1987. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae):a concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny). Mar. Micropaleontol. 12:357381.Google Scholar
Caron, D.A., , A.W.H., and Anderson, O.R. 1981. Effects of variations in light intensity on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture. J. mar. biol. Ass. U.K. 62:435451.Google Scholar
Caron, D.A., and Swanberg, N.R. 1990. The ecology of planktonic sarcodines. Aquat. Sci. 3 (2 & 3): 147180.Google Scholar
Curry, W.B., Thunell, R.C., and Honjo, S. 1983. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth Planet. Sci. Lett. 64:3343.Google Scholar
d'Orbigny, A.D. 1826. Tableau méthodique de la classe des Céphalopodes. Ann. Sci. Nat. 1 (7):245314.Google Scholar
Deuser, W.G., and Ross, E.H. 1989. Seasonally abundant planktonic foraminifera of the Sargasso Sea: Succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. J. Foram. Res. 19 (4):268293.Google Scholar
Deuser, W.G., et al., 1981. Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33:103127.CrossRefGoogle Scholar
Droxler, A.W., et al., 1990. Pliocene-Pleistocene aragonite cyclic variations in holes 714A and 716B (the Maldives) compared with hole 633A (the Bahamas): records of climate-induced CaCO3 preservation at intermediate water depths, pp. 539577 in Duncan, R. A., Backman, J., Peterson, L. C. et al. (eds.), Proceed. Ocean Drill. Progr. Sci. Res. Google Scholar
Duplessy, J-C., Blanc, P-L., and , A.W.H. 1981. Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science 213:12471250.Google Scholar
Duplessy, J.C., et al., 1988. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3 (3):343360.Google Scholar
Emiliani, C. 1954. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. Amer. J. Sci. 252:149158.Google Scholar
Emiliani, C. 1955. Pleistocene temperatures. J. Geol. 63:538578.Google Scholar
Epstein, S., et al., 1953. Revised carbonate-water isotopic temperature scale. Geol. Soc. Amer. Bull. 64:13151325.Google Scholar
Erez, J. 1978. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273:199202.Google Scholar
Erez, J., and Honjo, S. 1981. Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. Palaeogeogr., Palaeoclimatol., Palaeoecol. 33:129156.Google Scholar
Faber, W.W. Jr, et al., 1988. Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: I. Occurrence and stability of two mutually exclusive chrysophyte endosymbionts and their ultrastructure. J. Foram. Res. 18 (4):334343.Google Scholar
Fairbanks, R.G., Wiebe, P.H., and , A.W.H. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207:6163.Google Scholar
Fontugne, M.R., and Duplessy, J-C. 1978. Carbon isotope ratio of marine plankton related to surface water masses. Earth Planet. Sci. Lett. 41:365371.Google Scholar
Fontugne, M.R., and Duplessy, J-C. 1981. Organic carbon isotopic fractionation by marine plankton in the temperature range −1 to 31° C. Oceanol. Acta 4 (1):8590.Google Scholar
Gastrich, M.D. 1987. Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. J. Phycol. 23:623632.Google Scholar
Hemleben, Ch., Spindler, M., and Anderson, O.R. 1989. Modern planktonic foraminifera. Springer-Verlag, New York.Google Scholar
Hemleben, C., et al., 1985. Field and laboratory studies on the ontogeny and ecology of some Globorotaliid species from the Sargasso Sea off Bermuda. J. Foram. Res. 15 (4):254272.CrossRefGoogle Scholar
Huber, B.T., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orbigny). Paleobiology 23 (1):3362.Google Scholar
Jørgensen, B.B., et al., 1985. Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnol. Oceanogr. 30 (6):12531267.Google Scholar
Kahn, M.I. 1979. Non-equilibrium oxygen and carbon isotopic fractionation in tests of living planktonic foraminifera. Oceanol. Acta 2 (2): 195208.Google Scholar
Ketten, D.R., and Edmond, J.M. 1979. Gametogenesis and calcification of planktonic foraminifera. Science 278:546548.Google Scholar
Killingley, J.S., Johnson, R.F., and Berger, W.H. 1981. Oxygen and carbon isotopes of individual shells of planktonic foraminifera from Ontong-Java Plateau, equatorial Pacific: Palaeogeogr:, Palaeoclimatol., Palaeoecol. 33:193204.CrossRefGoogle Scholar
Kincaid, E.D. 1994. Reconstructing glacial-to-interglacial Indian Ocean sea surface hydrography using oxygen isotopes from individual planktonic foraminifera. , University California Davis.Google Scholar
Kroopnick, P.M. 1985. The distribution of 13C of SCO2 in the world oceans. Deep-Sea Res. 32:5784.Google Scholar
Labeyrie, L.D., Duplessy, J-C., and Blanc, P.L. 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327 (6122):477482.Google Scholar
Le Calvez, J. 1936. Modifications du test des Foraminiféres pélagiques en rapport avec la reproduction: Orbulina universa d'Orb. et Tretomphalus bulloides d'Orb. Annal. Protistol. 5:125133.Google Scholar
Lohmann, G.P. 1995. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10 (3):445457.Google Scholar
Lohmann, H. 1920. Die Bevölkerung des Ozeans mit Plankton nach den Ergebnissen der Zentrifugenfange während der Ausreise der Deutschland 1911, zugleich ein Beitrag zur Biologie des Atlantishchen Ozeans. Arch. Biontol. 4:617 p.Google Scholar
McConnaughey, T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim. Cosmochim. Acta 53:151162.Google Scholar
McConnaughey, T. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 53:163171.CrossRefGoogle Scholar
McConnaughey, T.A., et al., 1997. Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim. Cosmochim. Acta 61 (3):611622.Google Scholar
McCrea, J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18 (6):849857.Google Scholar
Oba, T. 1990. Paleoceanographic information obtained by the isotopic measurement of individual foraminiferal specimens. Proceed. 1st Intl. Conf. Asian Mar. Geol.:169180.Google Scholar
Owen, S.R.J. 1867. On the surface-fauna of mid-ocean. Zool. J. Linnean Soc. Lond. 9:147.Google Scholar
Parker, W.K., and Jones, T.R. 1865. On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Straits, Baffin's Bay. Phil. Trans. 155:325441.Google Scholar
Ravelo, A.C., and Fairbanks, R.G. 1990. Reconstructing tropical atlantic hydrography using planktonic foraminifera and an ocean model. Paleoceanography 5 (3):409431.Google Scholar
Ravelo, A.C., and Fairbanks, R.G. 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient. Paleoceanography 7 (6):815831.Google Scholar
Rhumbler, L. 1901. Nordische plankton-foraminiferen. p. 33 in Brandt, K., ed. Nordisches Plankton, Kiel and Leipzig.Google Scholar
Rink, S., et al., 1998. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa . Mar. Biol. 131:583595.CrossRefGoogle Scholar
Romanek, C.S., Grossman, E.L., and Morse, J.W. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56 (1):419430.Google Scholar
Russell, A.D., et al. 1994. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochim. Cosmochim. Acta 58:671681.Google Scholar
Sanyal, A., et al., 1995. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373:234236.Google Scholar
Sautter, L.R., and Thunell, R.C. 1991. Seasonal variability in the δ18O and δ13C of planktonic foraminifera from an upwelling environment: Sediment trap results from the San Pedro Basin, Southern California Bight. Paleoceanography 6 (3):307334.Google Scholar
Schiffelbein, P., and Hills, S. 1984. Direct assessment of stable isotope variability in planktonic foraminifera populations. Palaeogeogr., Palaeoclimatol., Palaeoecol. 48:197213.Google Scholar
Schott, W. 1935. Die Foraminiferen in dem äquatorialen Teil des Atlantischen Ozeans: Deut. Atlant. Exped. Meteor 1925–1927. Wiss. Ergebnisse 3:43134.Google Scholar
Schweitzer, P.N., and Lohmann, G.P. 1991. Ontogeny and habitat of modern menardiiform planktonic foraminifera. J. Foram. Res. 21 (4):332346.Google Scholar
Shackleton, N.J. 1977. Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. Pp. 401427 in Andersen, N. R. and Malahoff, A. (eds.), The fate of fossil fuel CO2 in the oceans. Plenum Publishing Corporation, New York.Google Scholar
Shackleton, N.J., and Opdyke, N.D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3:3955.CrossRefGoogle Scholar
Shackleton, N.J., Wiseman, J.D.H., and Buckley, H.A. 1973. Non-equilibrium isotopic fractionation between seawater and planktonic foraminiferal tests. Nature 242:177179.Google Scholar
Spero, H.J. 1987. Symbiosis in the planktonic foraminifer, Orbulina universa, and the isolation of its symbiotic dinoflagellate, Gymnodinium béii Sp. Nov. J. Phycol 23:307317.Google Scholar
Spero, H.J. 1988. Ultrastructural examination of chamber morphogenesis and biomineralization in the planktonic foraminifer Orbulina universa . Mar. Biol. 99:920.Google Scholar
Spero, H.J. 1992. Do planktic foraminifera accurately record shifts in the carbon isotopic composition of sea water jCO2? Mar. Micropaleontol. 19 (1992):275285.Google Scholar
Spero, H.J., et al., 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497500.Google Scholar
Spero, H.J., and DeNiro, M.J. 1987. The influence of symbiont photosynthesis on the d18O and d13C values of planktonic foraminiferal shell calcite. Symbiosis 4:213228.Google Scholar
Spero, H.J., and Lea, D.W. 1993. Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments. Mar. Micropaleontol. 22:221234.CrossRefGoogle Scholar
Spero, H.J., and Lea, D.W. 1996. Experimental determination of stable isotope variability in Globigerina bulloides: Implications for paleoceanographic reconstruction. Mar. Micropaleontol. 28:231246.Google Scholar
Spero, H.J., and Parker, S.L. 1985. Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. J. Foram. Res. 15 (4):273281.Google Scholar
Spero, H.J., and Williams, D.F. 1988. Extracting environmental information from planktonic foraminiferal d13C data. Nature 335 (6192):717719.Google Scholar
Spero, H.J., and Williams, D.F. 1989. Opening the carbon isotope “vital effect” black box. 1. Seasonal temperatures in the euphotic zone. Paleoceanography 4 (6):593601.Google Scholar
Spero, H.J., and Williams, D.F. 1990. Evidence for seasonal low-salinity surface waters in the Gulf of Mexico over the last 16,000 years. Paleoceanography 5 (6):963975.Google Scholar
Spindler, M., et al., 1978. Light and electron microscopic observations of gametogenesis in Hastigerina pelagica (Foraminifera). J. Protozool. 25 (4):427433.Google Scholar
Spindler, M., et al., 1979. Lunar periodicity of reproduction in the planktonic foraminifer Hastigerina pelagica . Mar. Ecol. Prog. Ser. 1:6164.Google Scholar
Spindler, M., et al., 1984. Feeding behavior of some planktonic foraminifers in laboratory cultures. J. Foram. Res. 14 (4):237249.Google Scholar
Stott, L.D., and Tang, C.M. 1996. Reassessment of foraminiferal-based tropical sea surface d18O paleotemperatures. Paleoceanography 11 (1):3756.Google Scholar
Sverdlove, M.S., and , A.W.H. 1985. Taxonomic and ecological significance of embryonic and juvenile planktonic foraminifera. J. Foram. Res. 15 (4):235241.Google Scholar
Swanberg, N.R., and Caron, D.A. 1991. Patterns of sarcodine feeding in epipelagic oceanic plankton. J. Plank. Res. 13 (2):287312.Google Scholar
Urey, H.C. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947:562581.Google Scholar
Urey, H.C. 1948. Oxygen isotopes in nature and in the laboratory. Science 108:489496.Google Scholar
Vergnaud Grazzini, C. 1976. Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 20:263276.Google Scholar
Williams, D.F., , A.W.H., and Fairbanks, R.G. 1979. Seasonal oxygen isotopic variations in living planktonic foraminifera off Bermuda. Science 206:447449.Google Scholar
Williams, D.F., , A.W.H., and Fairbanks, R.G. 1981. Seasonal stable isotopic variations in living planktonic foraminifera from Bermuda plankton tows. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33:71102.CrossRefGoogle Scholar
Williams, D.F., Sommer, M.A. II, and Bender, M.L. 1977. Carbon isotopic compositions of recent planktonic foraminifera of the Indian Ocean. Earth Planet. Sci. Lett. 36:391403.Google Scholar
Wolff, T., et al., 1998. Oxygen isotopes versus CLIMAP (18ka) temperatures: A comparison from the tropical Atlantic. Geology 26 (8):675678.Google Scholar