Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:04:15.018Z Has data issue: false hasContentIssue false

Echinoderm phylogeny: how congruent are morphological and molecular estimates?

Published online by Cambridge University Press:  21 July 2017

Andrew B. Smith*
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road London SW7 5BD, United Kingdom
Get access

Abstract

Single data sets, whether derived from morphological or molecular evidence, provide one-off estimates of the correct phylogeny. Their reliability can only be gauged by statistical approaches such as bootstrapping or clade decay, but these test only whether there are sufficient characters in the data matrix to justify the groupings identified. They do not test whether the characters themselves are reliable. Consequently, confidence in the correctness of phylogenetic interpretations comes primarily from discovering the same (or statistically indistinguishable) patterns from independent data sets.

Congruence studies are most advanced for echinoids, where four independent data sets (two morphological and two molecular) provide strong corroboration for a single phylogenetic scheme. Analysis of all four data sets combined generates a highly robust hypothesis of relationships. The situation is very different for asteroids. Two analyses based on morphological data have reached very different conclusions. Three independent molecular data sets also have been compiled, but none has a statistically reliable signal concerning higher taxon relationships. Even combining all three molecular data sets fails to generate a statistically robust solution, implying that the major lines of asteroids diverged rapidly from one another. For ophiuroids, both morphological and molecular data generate topologies that for the most part lack statistical robustness. There is currently no cladistic analysis of holothurian relationships based on morphological data, and only a few taxa have been sequenced. The molecular data is, however, congruent and does permit an initial assessment of relationships. Nothing definite can be deduced about crinoid relationships since even fewer molecular sequences are known and morphological analysis remains sketchy.

Class-level relationships derived from two morphological and two molecular data sets also show considerable congruence, though a single definitive solution has yet to emerge.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, D. B. 1987. A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata). Journal of Natural History, 21:481528.CrossRefGoogle Scholar
Blake, D. B. 1989. Paxillosidans are not primitive asteroids: a hypothesis based on functional considerations, p. 309314. In Burke, R. D., Mladenov, P. V., Lambert, P. and Parsley, R. L. (eds.), Echinoderm Biology. A. A. Balkema, Rotterdam.Google Scholar
Broadhead, T. W., and Waters, J. A. 1980. Echinoderms. Notes for a short course. University of Tennessee, Department of Geological Sciences, Studies in Geology, 3.Google Scholar
Bull, J. J., Huelsenbeck, J. P., Cunningham, C. W., Swofford, D. L., and Waddell, P. J. 1995. Partitioning and combining data in phylogenetic analysis. Systematic Biology, 42:384397.Google Scholar
David, B. 1988. Origins of the deep-sea holasteroid fauna, p. 331346. In Paul, C. R. C. and Smith, A. B. (eds), Echinoderm Phylogeny and Evolutionary Biology, Current Geological Concepts, 1. Oxford Science Publications and Liverpool Geological Society.Google Scholar
De Queiroz, A., Donoghue, M. J., and Kim, J. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Reviews in Ecology and Systematics, 26:657681.Google Scholar
De Rijk, P., Van De Peer, Y., Van Den Broek, I., and De Wachter, R. 1995. Evolution according to large ribosomal subunit RNA. Journal of Molecular Evolution, 41:366375.Google ScholarPubMed
Farris, J., Kållersjö, M., Kluge, A. G., and Bult, C. 1994. Testing significance of incongruence. Cladistics, 10:315320.Google Scholar
Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Reviews in Genetics, 22:521565.Google Scholar
Feral, J. P. and Derelle, E. 1991. Partial sequence of the 28S ribosomal RNA and the echinoid taxonomy and phylogeny. Application to the Antarctic brooding schizasterids, p. 331337. In Yanagisawa, T., Yasumasu, I., Oguro, C., Suzuki, N., and Motokawa, T. (eds), Echinoderm Biology. A. A. Balkema, Rotterdam.Google Scholar
Gale, A. S. 1987. Phylogeny and classification of the Asteroidea (Echinodermata). Zoological Journal of the Linnean Society, 89:107132.Google Scholar
Gilliland, P. M. 1993. The skeletal morphology, systematics and evolutionary history of holothurians. Palaeontological Association Special Papers in Palaeontology, 47:1147.Google Scholar
De Giorgi, C., Martiradonna, A., Lanave, C., and Saccone, C. 1996. Complete sequence of the mitochondrial DNA in the sea urchin Arbacia lixula: conserved features of the echinoid mitochondrial genome. Molecular Phylogeny and Evolution, 5:323332.CrossRefGoogle ScholarPubMed
Harvey, P. H., and Pagel, M. 1991. The comparative method in evolutionary biology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Jacobs, H.T., Balfe, P., Cohen, B. L., Farquharson, A., and Comito, L. 1988. Phylogenetic implications of genome rearrangement and sequence evolution in echinoderm mitochondrial DNA, p. 121138. In Paul, C. R. C. and Smith, A. B. (eds) Echinoderm phylogeny and evolutionary biology, Current Geological Concepts 1. Oxford Science Publications and Liverpool Geological Society.Google Scholar
Jensen, M. 1981. Morphology and classification of Euechinoidea Bronn, 1860—a cladistic analysis. Videnskabelige Meddelelser frå Dansk naturhistorisk Forening i Kjøbenhavn, 143:799.Google Scholar
Lafay, B., Smith, A. B., and Christen, R. 1995. A combined morphological and molecular approach to the phylogeny of asteroids (Asteroidea: Echinodermata). Systematic Biology, 44:190208.Google Scholar
Larson, A. 1994. The comparison of morphological and molecular data in phylogenetic systematics, p. 372390. In Schierwater, B., Streit, B., Wagner, G. P., and DeSalle, R. (eds.), Molecular Ecology and Evolution: Approaches and Applications. Birkhauser, Basel, Switzerland.Google Scholar
Lecointre, G., Philippe, H., Le, H. V. L., and Le Guyader, H. 1993. Species sampling has a major impact on phylogenetic inference. Molecular Phylogenetics and Evolution, 3:205224.Google Scholar
Littlewood, D. T. J. 1995. Echinoderm class relationships revisited, p. 1928. In Emson, R. H., Smith, A. B., and Campbell, A. C. (eds.), Echinoderm Research 1995. A. A. Balkema, Rotterdam.Google Scholar
Littlewood, D. T. J., and Smith, A. B. 1995. A combined morphological and molecular phylogeny for echinoids. Philosophical Transactions of the Royal Society of London, B347:213234.Google Scholar
Littlewood, D. T. J., Smith, A. B., Clough, K. A. and Emson, R. H. In press. The interrelationships of echinoderm classes: morphological and molecular evidence. Biological Journal of the Linnean Society.Google Scholar
Matsuoka, N. 1985. Biochemical phylogeny of the sea-urchins of the family Toxopneustidae. Comparative Biochemistry and Physiology, 80B:767771.Google Scholar
Matsuoka, N. 1986. Further immunological study on the phylogenetic relationships among sea-urchins of the order Echinoida. Comparative Biochemistry and Physiology, 84B:465468.Google Scholar
Matsuoka, N. 1987. Biochemical studies on the taxonomic situation of the sea-urchin Pseudocentrotus depressus. Zoological Sciences, 4:339347.Google Scholar
Matsuoka, N. 1989. Biochemical systematics of four sea-urchin species of the family Diadematidae from Japanese waters. Biochemical Systematics and Ecology, 17:423429.Google Scholar
Matsuoka, N., and Suzuki, H. 1987. Electrophoretic study on the taxonomic relationship of the two morphologically very similar sea-urchins Echinostrephus aciculatus and E. molaris . Comparative Biochemistry and Physiology, 88B:637641.Google Scholar
Matsuoka, N., and Suzuki, H. 1989. Electrophoretic study on the phylogenetic relationships among six species of sea-urchins of the family Echinometridae found in the Japanese waters. Zoological Sciences, 6:589598.Google Scholar
Marshall, C. R. 1992. Character analysis and the integration of molecular and morphological data in an understanding of sand dollar phylogeny. Molecular Biology and Evolution, 9:309322.Google Scholar
Marshall, C. R. 1994. Molecular approaches to echinoderm phylogeny, p. 6371. In David, B., Guille, A., Féral, J. P., and Roux, M. (eds), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Marshall, C. R., and Swift, H. 1992. DNA-DNA hybridization phylogeny of sand dollars and highly reproducible extent of hybridization values. Journal of Molecular Evolution, 34:3144.Google Scholar
Miyamoto, M. M., and Fitch, W. M. 1995. Testing species phylogenies and phylogenetic methods with congruence. Systematic Biology, 44:6476.CrossRefGoogle Scholar
Mooi, R. 1987. A cladistic analysis of the sand dollars (Clypeasteroida: Scutellina) and the interpretation of heterchronic phenomena. , Department of Zoology, University of Toronto, Canada.Google Scholar
Mooi, R. 1990. Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology, 16:2548.Google Scholar
Mooi, R., and David, B. 1996. Phylogenetic analysis of extreme morphologies: deep-sea holasteroid echinoids. Journal of Natural History, 30:913953.Google Scholar
Patterson, C., Williams, D. M., and Humphries, C. J. 1994. Congruence between molecular and morphological phylogenies. Annual Reviews in Systematics and Ecology, 24:153188.Google Scholar
Philippe, H., and Douzery, E. 1994. The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. Journal of Mammalian Evolution, 2:133152.Google Scholar
Raff, R. A., Field, K. G., Ghiselin, M. T., Lane, D. J., Olsen, G. J., Pace, N. R., Parks, A. L., Parr, B. A., and Raff, E.C. 1988. Molecular analysis of distant phylogenetic relationships in echinoderms, p. 2941. In Paul, C. R. C. and Smith, A. B. (eds), Echinoderm Phylogeny and Evolutionary Biology, Current Geological Concepts 1. Oxford Science Publications and Liverpool Geological Society.Google Scholar
Ratto, A., and Christen, R. 1990. Molecular phylogeny of echinoderms deduced from partial sequences of 28S ribosomal RNA. Compte Rendus de l'Academie Scientifique de Paris, 310:169173.Google Scholar
Simms, M. J. 1988. The phylogeny of post-Palaeozoic crinoids, p. 269286. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology, Current Geological Concepts, 1. Oxford Science Publications and Liverpool Geological Society.Google Scholar
Smith, A. B. 1981. Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology, 24:779801.Google Scholar
Smith, A. B. 1988. Phylogenetic relationship, divergence times, and rates of molecular evolution for camarodont sea urchins. Molecular Biology and Evolution, 5:345365.Google Scholar
Smith, A. B., and Littlewood, D. T. J. In press. Molecular and morphological evolution during the post-Paleozoic diversification of echinoids. In Givnish, T. J. and Sytsma, K. J. (eds.), Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge.Google Scholar
Smith, A. B., and Wright, C. W. 1989. British Cretaceous echinoids. Part 1, General introduction and Cidaroida. Palaeontographical Society Monographs, 578:101198, pls 33–72.Google Scholar
Smith, A. B., and Wright, C. W. 1990. British Cretaceous echinoids. Part 2, Echinothurioida, Diadematoida and Stirodonta (1, Calycina). Palaeontographical Society Monographs, 583:101198, pls 33–72.Google Scholar
Smith, A. B., and Wright, C. W. 1993. British Cretaceous echinoids. Part 3, Stirodonta 2 (Hemicidaroida, Arbacioida and Phymosomatoida, part 1). Palaeontographical Society Monographs, 593:199267, pls 73–92.Google Scholar
Smith, A. B., Lafay, B., and Christen, R. 1992. Comparative variation of morphological and molecular evolution through geological time: 28S ribosomal RNA versus morphology in echinoids. Philosophical Transactions of the Royal Society of London, B338:365382.Google Scholar
Smith, A. B., Littlewood, D. T. J., and Wray, W. A. 1995. Comparing patterns of evolution: larval and adult life history stages and small subunit ribosomal RNA of post-Palaeozoic echinoids. Philosophical Transactions of the Royal Society of London, B349:1118.Google Scholar
Smith, A. B., Littlewood, D. T. J., and Wray, W. A. 1996. Comparative evolution of larval and adult life history stages and small subunit ribosomal RNA amongst post-Palaeozoic echinoids, p. 234254. In Harvey, P. H., Leigh Brown, A. J., Maynard Smith, J., and Nee, S. (eds.), New Uses for New Phylogenies. Oxford University Press, Oxford.Google Scholar
Smith, A. B., Paterson, G. L., and Lafay, B. 1995. Ophiuroid phylogeny and higher taxonomy: morphological, molecular and palaeontological perspectives. Zoological Journal of the Linnean Society, 114:213243.Google Scholar
Smith, M. J., Arndt, A., Gorski, S., and Fajber, E. 1993. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. Journal of Molecular Evolution, 36:365382.Google Scholar
Suter, S. J. 1994a. Cladistic analysis of cassiduloid echinoids: trying to see the phylogeny for the trees. Biological Journal of the Linnean Society, 53:3172.Google Scholar
Suter, S. J. 1994b. Cladistic analysis of the living cassiduloids (Echinoidea), and the effects of character ordering and successive approximations weighting. Zoological Journal of the Linnean Society, 112:363387.Google Scholar
Suzuki, N., and Yoshino, K. I. 1992. The relationship between amino acid sequences of sperm-activating peptides and the taxonomy of echinoids. Comparative Biochemistry and Physiology, 102B:679690.Google Scholar
Wada, H., and Satoh, N. 1994. Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. Journal of Molecular Evolution, 38:4149.CrossRefGoogle ScholarPubMed
Wada, H., Komatsu, M., and Satoh, N. 1996. Mitochondrial rDNA phylogeny of the Asteroidea suggests the primitiveness of the Paxillosida. Molecular Phylogeny and Evolution, 6:97106.Google Scholar
Wray, G. A. 1992. The evolution of larval morphology during the post-Paleozoic radiation of echinoids. Paleobiology, 18:258287.Google Scholar
Wray, G. A. 1994. Larval morphology and echinoid phylogeny, p. 91. In David, B., Guille, A., Feral, J. P., and Roux, M. (eds), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Wray, G. A. 1996. Parallel evolution of non-feeding larvae in echinoids. Systematic Biology, 45:308322.Google Scholar