Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T05:34:38.278Z Has data issue: false hasContentIssue false

Paleocommunity and evolutionary ecology of Paleozoic crinoids

Published online by Cambridge University Press:  21 July 2017

Peter F. Holterhoff*
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
Get access

Abstract

Crinoids were a common component of Paleozoic benthic paleocommunities, yet they have been under-utilized in paleoecological analyses. Recent efforts to incorporate disarticulated ossicles into these analyses have greatly increased the robustness of paleoecological patterns noted for the Crinoidea. Analyses of crinoid functional morphology, particularly filtration dynamics, have provided testable hypotheses concerning the distribution of crinoids among benthic environments. These models predict that crinoids with dense-mesh filtration fans should be most common in high energy, shoreward paleoenvironments, whereas open-fan crinoids should be most common in low-energy, offshore paleoenvironments. Review of the Paleozoic fossil record appears to support these general predictions—from the Late Ordovician to the end of the Paleozoic, dense-fan crinoids are most abundant in nearshore paleoenvironments, whereas open-fan crinoids are most abundant offshore.

The partitioning of crinoid diversity through the Paleozoic shifted through time. Beta diversity was highest in the Ordovician, implying that the early diversification of crinoids was focused on partitioning the benthic landscape among taxa. Beta diversity was quite low by the late Paleozoic, however, local and within-habitat alpha diversity was much greater than during the Ordovician. This resulted in generally higher levels of eurytopy in the late Paleozoic compared to the Ordovician. Patterns of faunal disassembly associated with regional extinctions in North America during the Ordovician and Permian underscore the differences in the paleoecology of these crinoid faunas.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W.I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology, 54:273288.Google Scholar
Ausich, W.I. 1984a. Calceocrinids from the Early Silurian (Llandoverian) Brassfield Formation of southwestern Ohio. Journal of Paleontology, 58:11671185.Google Scholar
Ausich, W.I. 1984b. The genus Clidochirus from the Early Silurian of Ohio (Crinoidea: Llandoverian). Journal of Paleontology, 58:13411346.Google Scholar
Ausich, W.I. 1985. New crinoids and revision of the superfamily Glyptocrinacea (Early Silurian, Ohio). Journal of Paleontology, 59:793808.Google Scholar
Ausich, W.I. 1986a. Early Silurian rhodocrinitacean crinoids (Brassfield Formation, Ohio). Journal of Paleontology, 60:84106.CrossRefGoogle Scholar
Ausich, W.I. 1986b. Early Silurian inadunate crinoids (Brassfield Formation, Ohio). Journal of Paleontology, 60:719735.CrossRefGoogle Scholar
Ausich, W.I. 1986c. New camerate crinoids of the suborder Glyptocrinina from the Lower Silurian Brassfield Formation (southwestern Ohio). Journal of Paleontology, 60:887889.CrossRefGoogle Scholar
Ausich, W.I. 1987. Brassfield Compsocrinina (Lower Silurian crinoids) from Ohio. Journal of Paleontology, 61:552562.CrossRefGoogle Scholar
Ausich, W.I. 1990. Regional encrinites: how can 5 × 109 m3 of crinoidal limestone be accumulated? Geological Society of America Abstracts with Programs, 22:A219.Google Scholar
Ausich, W.I., Kammer, T. W., and Baumiller, T. K. 1994. Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology, 20:345361.CrossRefGoogle Scholar
Ausich, W.I., Kammer, T. W., and Lane, N. G. 1979. Fossil communities of the Borden (Mississippian) delta in Indiana and Northern Kentucky. Journal of Paleontology, 53:11821196.Google Scholar
Ausich, W.I., and Lane, N. G. 1985. Crinoid assemblages and geographic endemism in the Lower Mississippian (Carboniferous) of the United States continental interior, p. 216224. In Dutro, J. T. and Pfefferkorn, H. W. (eds.), Neuvième Congres International de Stratigraphie et de Geologie du Carbonifère, Compte Rendu, Volume 5.Google Scholar
Baumiller, T. K. 1990. Crinoid Functional Morphology and the Energetics of Passive Suspension Feeding: Implications to the Evolutionary History of Paleozoic Crinoidea. Unpublished Ph.D. Dissertation, University of Chicago, Chicago, 150 P.Google Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology, 19:304321.CrossRefGoogle Scholar
Baumiller, T. K. 1997. Crinoid functional morphology, p. 4568. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Boardman, D. R., Cocke, J. M., and Mapes, R. H. 1989. Locality register for Middle and Upper Pennsylvanian strata, north-central Texas, p. 351380. In Boardman, D. R., Barrick, J. E., Cocke, J., and Nestell, M. K. (eds.), Middle and Late Pennsylvanian Chronostratigraphic Boundaries in North-Central Texas: Glacial Eustatic Events, Biostratigraphy, and Paleoecology. Texas Tech University Studies in Geology 2.Google Scholar
Boardman, D. R., Mapes, R. H., Yancey, T. E., and Malinky, J. M. 1984. A new model for the depth-related allogenic community succession within North American Pennsylvanian cyclothems and implications on the black shale problem, p. 141182. In Hyne, N. J. (ed.), Limestones of the Midcontinent. Tulsa Geological Society Special Publication, 2.Google Scholar
Breimer, A. 1969. A contribution to the paleoecology of Palaeozoic stalked crinoids. Processen Koninklijke Nederlandsche Akademie van Wetenschappen, Series B, 72:139150.Google Scholar
Brenchley, P. J. 1989. The Late Ordovician extinction, p. 104132. In Donovan, S. K. (ed.), Mass Extinctions Processes and Evidence. Columbia University Press, New York.Google Scholar
Brett, C. E. 1978. Systematics and Paleoecology of Late Silurian (Wenlockian) Pelmatozoan Echinoderms from Western New York and Ontario. Unpublished Ph.D. Dissertation, University of Michigan, Ann Arbor, 613 p.Google Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia, 14:343370.CrossRefGoogle Scholar
Brett, C. E. 1984. Autecology of Silurian pelmatozoan echinoderms, p. 87120. In Bassett, M. G. and Lawson, J. D. (eds.), Autecology of Silurian Organisms. The Palaeontological Association Special Papers in Palaeontology, 32.Google Scholar
Brett, C. E. 1985. Pelmatozoan echinoderms on Silurian bioherms in western New York and Ontario. Journal of Paleontology, 59:820838.Google Scholar
Brett, C. E. 1991. Organism–sediment relationships in Silurian marine environments, p. 301344. In Bassett, M. G., Lane, P. D., and Edwards, D. (eds.), The Murchison Symposium. The Palaeontological Association Special Papers in Palaeontology, 44.Google Scholar
Brett, C. E., and Baird, G. C. 1986. Symmetrical and upward shallowing cycles in the Middle Devonian of New York State and their implications for the punctuated aggradational cycle hypothesis. Paleoceanography, 1:431445.CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian basin, p. 285315. In Erwin, D. H. and Anstey, R. L. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York.Google Scholar
Brett, C. E., Goodman, W. M., and LoDuca, S. T. 1990. Sequences, cycles, and basin dynamics in the Silurian of the Appalachian Foreland Basin. Sedimentary Geology, 69:191244.CrossRefGoogle Scholar
Brett, C. E., Moffat, H. A., and Taylor, W. L. 1997. Echinoderm taphonomy, taphofacies, and Lagerstätten, p. 147190. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone. Palaeontographica Americana, Volume VII, Number 46, 499 p.Google Scholar
Brower, J. C. 1977. Calceocrinids from the Bromide Formation (Middle Ordovician) of Southern Oklahoma. Oklahoma Geological Survey, Circular 78, 27 p.Google Scholar
Burdick, D. W., and Strimple, H. L. 1971. Crinoids from the Beech Creek Limestone, lower Golconda Group, St. Clair County, Illinois, p. 1547. In Furnish, W. M., Saunders, W. B., Burdick, D. W., and Strimple, H. L., Faunal Studies of the type Chesteran, Upper Mississippian of southwestern Illinois. University of Kansas Paleontological Contributions Paper 51.Google Scholar
Burdick, D. W., and Strimple, H. L. 1982. Genevievian and Chesterian Crinoids of Alabama. Geological Survey of Alabama Bulletin, 121, 277 p.Google Scholar
Buzas, M. A., and Culver, S. J. 1994. Species pool and dynamics of marine paleocommunities. Science, 264:14391441.CrossRefGoogle ScholarPubMed
Byrne, M., and Fontaine, A. R. 1981. The feeding behavior of Florometra serratissima (Echinodermata: Crinoidea). Canadian Journal of Zoology, 59:1118.CrossRefGoogle Scholar
Calder, W. A. 1984. Size, Function, and Life History. Harvard University Press, Cambridge, MA, 431 p.Google Scholar
Chesnut, D. R. and Ettensohn, F. R. 1988. Hombergian (Chesterian) Echinoderm Paleontology and Paleoecology, South-Central Kentucky. Bulletins of American Paleontology, 95(330), 102 p.Google Scholar
Conkin, J. E., and Davidson, S. R. 1991. Podolithus, crinoid base, its use in recognition of Ordovician and Devonian disconformities in eastern North America. Geological Society of America Abstracts with Programs, 23(3):8.Google Scholar
Dattilo, B. F. 1996. A quantitative paleoecological approach to high-resolution cyclic and event stratigraphy: the Upper Ordovician Miamitown Shale in the type Cincinnatian. Lethaia, 29:2138.CrossRefGoogle Scholar
Donovan, S. K. 1989. The significance of the British Ordovician crinoid fauna. Modern Geology, 13:243255.Google Scholar
Donovan, S. K., Kallmeyer, J. W., and Veltkamp, C. J. 1995. Functional morphologies of the columns of Upper Ordovician Xenocrinus and Dendrocrinus. Lethaia, 28:309316.CrossRefGoogle Scholar
Eckert, J. D. 1984. Early Llandovery crinoids and stelleroids from the Cataract Group (Lower Silurian) in southern Ontario, Canada. Royal Ontario Museum, Life Sciences Contributions, 137, 83 p.CrossRefGoogle Scholar
Eckert, J. D. 1988. Late Ordovician extinction of North American and British crinoids. Lethaia, 21:147167.CrossRefGoogle Scholar
Elias, M. K. 1937. Depth of deposition of the Big Blue (late Paleozoic) sediments in Kansas. Geological Society of America Bulletin, 48:403432.CrossRefGoogle Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20:320344.CrossRefGoogle Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology, 21:273299.CrossRefGoogle Scholar
French, J. A., and Watney, W. L. 1993. Stratigraphy and depositional setting of the lower Missourian (Pennsylvanian) Bethany Falls and Mound Valley limestones, analogues for age-equivalent ooid-grainstone reservoirs, Kansas. Kansas Geological Survey Bulletin, 235:2739.Google Scholar
Guensburg, T. E. 1984. Echinodermata of the Middle Ordovician Lebanon Limestone, central Tennessee. Bulletins of American Paleontology, 86(319), 100 p.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology, 20:407410.2.3.CO;2>CrossRefGoogle Scholar
Handford, C. R., and Dutton, S. P. 1980. Pennsylvanian–Early Permian depositional systems and shelf-margin evolution, Palo Duro Basin, Texas. American Association of Petroleum Geologists, Bulletin, 64:88106.Google Scholar
Hanski, I. 1989. Metapopulation dynamics: does it help to have more of the same? Trends in Ecology and Evolution, 4:113114.CrossRefGoogle ScholarPubMed
Hanski, I. 1991. Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society, 42:1738.CrossRefGoogle Scholar
Hanski, I., and Gilpin, M. 1991. Metapopulation dynamics: brief history and conceptual domain. Biological Journal of the Linnean Society, 42:316.CrossRefGoogle Scholar
Heckel, P. H., and Pabian, R. K. 1981. Compatibility of crinoid faunas with eustatic model for deposition of midcontinent Pennsylvanian cyclothems. Geological Society of America Abstracts with Programs, 13(3):281.Google Scholar
Holland, S. M. 1993. Sequence stratigraphy of a carbonate-clastic ramp: the Cincinnatian Series (Upper Ordovician) in its type area. Geological Society of America Bulletin, 105:306322.2.3.CO;2>CrossRefGoogle Scholar
Holterhoff, P. F. 1988. Morphologies and facies associations of crinoids from the lower Stanton Formation (Late Pennsylvanian, Lansing Group) of the mid-continent United States. Geological Society of America Abstracts with Programs, 20(5):349.Google Scholar
Holterhoff, P. F. 1995. Diversity structure of Permo–Pennsylvanian crinoid faunas from midcontinent North America: relationships between alpha and gamma. Geological Society of America Abstracts with Programs, 27(3):60.Google Scholar
Holterhoff, P. F. 1996a. Crinoid fauna disassembly and biofacies recurrence failure in the Chase Group (Sakmarian–Artinskian, Permian), midcontinent, N.A. Geological Society of America Abstracts with Programs, 28:A487.Google Scholar
Holterhoff, P. F. 1996b. Crinoid biofacies in Upper Carboniferous cyclothems, midcontinent, North America: faunal tracking and the role of regional processes in biofacies recurrence, 4781. In Ivany, L. C. and Schopf, K. M. (eds), New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 127.Google Scholar
Holterhoff, P. F. 1997. Filtration models, guilds, and biofacies: crinoid paleoecology of the Stanton Formation (Upper Pennsylvanian), midcontinent, North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 130:177208.CrossRefGoogle Scholar
Horowitz, A. S., and Waters, J. A. 1972. A Mississippian echinoderm site in Alabama. Journal of Paleontology, 46:660665.Google Scholar
Huston, M. A. 1994. Biological Diversity. Cambridge University Press, Cambridge, 681 p.Google Scholar
Kammer, T. W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology, 59:551560.Google Scholar
Kammer, T. W., and Ausich, W. I. 1987. Aerosol suspension feeding and current velocities: distributional controls for Late Osagean crinoids. Paleobiology, 13:379395.CrossRefGoogle Scholar
Kammer, T. W., Ausich., W. I. and Lane, N. G. 1983. Paleontology and stratigraphy of the Borden Delta of southern Indiana and northern Kentucky (Field Trip 2), p. 3771. In Shaver, R. H. and Sunderman, J. A. (eds.), Field Trips in Midwestern Geology, Volume 1. Indiana Geological Survey.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology, 25:219222.2.3.CO;2>CrossRefGoogle Scholar
Kammer, T. W., Brett, C. E., Boardman, D. R., and Mapes, R. H. 1986. Ecologic stability of the dysaerobic biofacies during the Late Paleozoic. Lethaia, 19:109121.CrossRefGoogle Scholar
Kelly, S. M. 1984. Paleoecology and Paleontology of the Indian Springs Shale Member, Big Clifty Formation (Middle Chesterian) in South-Central Indiana. Unpublished Ph.D. Dissertation, Indiana University, Bloomington.Google Scholar
Kolata, D. R. 1975. Middle Ordovician echinoderms from northern Illinois and southern Wisconsin. Paleontological Society Memoir 7, 74 p.Google Scholar
Lane, N. G. 1971. Crinoids and reefs. Proceedings of the North American Paleontological Convention, Part J: 14301443.Google Scholar
Lane, N. G. 1973. Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian: Indiana). University of California Publications in the Geological Sciences, 99, 141 p.Google Scholar
Lane, N. G., and Breimer, A. 1974. Arm types and feeding habits of Paleozoic crinoids. Processen Koninklijke Nederlandsche Akademie van Wetenschappen, Series B, 77:3239.Google Scholar
Lane, N. G., and Burke, J. J. 1976. Arm movement and feeding mode of inadunate crinoids with biserial muscular arm articulations. Paleobiology, 2:202208.CrossRefGoogle Scholar
Lane, N. G., and Webster, G. D. 1980. Crinoidea, p. 144157. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms. University of Tennessee Studies in Geology, 3.Google Scholar
Laudon, L. R. 1948. Osage–Meramec contact. Journal of Geology, 56:288302.CrossRefGoogle Scholar
Laudon, L. R. 1957. Crinoids, p. 961972. In Ladd, H. S. (ed.), Treatise on Marine Ecology and Paleoecology, Volume 2. Geological Society of America Memoir, 67.CrossRefGoogle Scholar
Lewis, R. 1980, Taphonomy, p. 2739. In Broadhead, T. W., and Waters, J. A. (eds.), Echinoderms. University of Tennessee Studies in Geology, 3.Google Scholar
Liddell, W. D. 1982. Suspension feeding by Caribbean comatulid crinoids, p. 3339. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the International Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Longman, M. W. 1982. Depositional environments, p. 1729. In Sprinkle, J. (ed.), Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1.Google Scholar
Lowenstam, H. A. 1957. Niagaran reefs in the Great Lakes area, p. 215248. In Ladd, H. S. (ed.), Treatise on Marine Ecology and Paleoecology, Volume 2. Geological Society of America Memoir, 67.CrossRefGoogle Scholar
Macurda, D. B., and Meyer, D. L. 1976. The identification and interpretation of stalked crinoids (Echinodermata) from deep-water photographs. Bulletin of Marine Science, 26:205215.Google Scholar
Meyer, D. L. 1973. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology, 22:105129.CrossRefGoogle Scholar
Meyer, D. L. 1979. Length and spacing of the tube feet in crinoids (Echinodermata) and their role in suspension-feeding. Marine Biology, 51:361369.CrossRefGoogle Scholar
Meyer, D. L. 1982. Food and feeding mechanisms: Crinozoa, p. 2542. In Jangoux, M. and Lawrence, J. M., (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology, 11:154164.CrossRefGoogle Scholar
Meyer, D. L., Ausich, W. I., and Terry, R. E. 1989. Comparative taphonomy of echinoderms in carbonate facies: Fort Payne Formation (Lower Mississippian) of Kentucky and Tennessee. Palaios, 4:533552.CrossRefGoogle Scholar
Meyer, D. L., Diekmeyer, S., and Holterhoff, P. F. 1990. Crinoid distribution in shoaling-upward carbonate–clastic sequences: Upper Ordovician (Maysvillian) of Ohio and Kentucky, USA. Seventh International Echinoderm Conference, Atami, p. 29.Google Scholar
Meyer, D. L., and Lane, N. G. 1976. The feeding behavior of some Paleozoic crinoids and Recent basketstars. Journal of Paleontology, 50:473480.Google Scholar
Meyer, D. L., and Meyer, K. 1986. Biostratinomy of Recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia. Palaios, 1:294302.CrossRefGoogle Scholar
Miller, W. 1990. Hierarchy, individuality, and paleoecosystems, p. 3147. In Miller, W. (ed.), Paleocommunity Temporal Dynamics: The Long-Term Development of Multispecies Assemblages. Paleontological Society Special Publication, 5.Google Scholar
Miller, W. 1993a. Models of recurrent fossil assemblages. Lethaia, 26:182183.CrossRefGoogle Scholar
Miller, W. 1993b. Benthic community replacement and population response. Neues Jahrbuch für Geologie und Paläontologie, Abhandlugen, 188:133146.Google Scholar
Moore, R. C. 1939. The use of fragmentary crinoidal remains in stratigraphic paleontology. Denison University Bulletin, Science Laboratory Journal, 33:165250.Google Scholar
Moore, R. C., and Jeffords, R. M. 1968. Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns. University of Kansas Paleontological Contributions Article, 9, 86 p.Google Scholar
Pabian, R. K., and Strimple, H. L. 1970. Paleoecology of Pennsylvanian crinoids from southeastern Nebraska and southwestern Iowa. Proceedings, 80th Annual Meeting, Nebraska Academy of Sciences, p. 36.Google Scholar
Pabian, R. K., Boardman, D. R., and Holterhoff, P. F. 1989. Paleoecology of Late Pennsylvanian and Early Permian crinoids from north-central Texas, p. 291303. In Boardman, D. R., Barrick, J. E., Cocke, J., and Nestell, M. K. (eds.), Middle and Late Pennsylvanian Chronostratigraphic Boundaries in North-Central Texas: Glacial Eustatic Events, Biostratigraphy, and Paleoecology. Texas Tech University Studies in Geology, 2, Part II.Google Scholar
Pabian, R. K., Mosher, D., Lewis, R. D., and Holterhoff, P. F. 1995. Crinoid assemblage from the Barnsdall Formation, Late Pennsylvanian (Missourian) Washington County, Oklahoma. Geological Society of America Abstracts with Programs, 27(3):78.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1993. Biotic response to a Middle Ordovician paleoceanographic event in eastern North America. Geology, 21:619622.2.3.CO;2>CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M. 1996. Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States, p. 131142. In Witzke, B. J., Ludvigson, G. A., and Day, J. (eds.), Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America Special Publication, 306.Google Scholar
Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge University Press, New York.CrossRefGoogle Scholar
Pulliam, H. R., 1988. Sources, sinks, and population regulation. American Naturalist, 132:652661.CrossRefGoogle Scholar
Rascoe, B. 1962. Regional stratigraphic analysis of Pennsylvanian and Permian rocks in western mid-continent, Colorado, Kansas, Oklahoma, Texas. American Association of Petroleum Geologists Bulletin, 46:13451370.Google Scholar
Rosenzweig, M. L., and Abramsky, Z. 1993. How are diversity and productivity related?, p. 5265. In Ricklefs, R. E. and Schluter, D. (eds.), Species Diversity in Ecological Communities. University of Chicago Press, Chicago.Google Scholar
Roughgarden, J. 1989. The structure and assembly of communities, p. 203226. In Roughgarden, J., May, R., and Levin, S. (eds.), Perspectives in Ecological Theory. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Rubenstein, D. I., and Koehl, M. A. R. 1977. The mechanisms of filter feeding: some theoretical considerations. American Naturalist, 111:981994.CrossRefGoogle Scholar
Schumaker, G. A., and Ausich, W. I. 1983. New Upper Ordovician echinoderm site: Bull Fork Formation, Caesar Creek Reservoir (Warren County, Ohio). Ohio Journal of Science, 83:6064.Google Scholar
Sepkoski, J. J. 1988. Alpha, beta, gamma: where does all the diversity go? Paleobiology, 14:221234.CrossRefGoogle ScholarPubMed
Sepkoski, J. J., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time, p. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns. Princeton University Press, Princeton, NJ.Google Scholar
Smith, L. B., and Read, J. F. 1995. Stratigraphic evidence for increasing amplitude 4th-order eustasy during Late Mississippian greenhouse to icehouse transition, Illinois Basin. Geological Society of America Abstracts with Programs, 27:A332.Google Scholar
Sprinkle, J. 1982. Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1, 369 p.Google Scholar
Sprinkle, J., and Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic evolutionary fauna: the role of substrates. Palaios, 10:437453.CrossRefGoogle Scholar
Van Sant, J. F. and Lane, N. G. 1964. Crawfordsville (Indiana) Crinoid Studies. University of Kansas Paleontological Contributions, Article 7, 136 p.Google Scholar
Warn, J., and Strimple, H. L. 1977. The Disparid Inadunate Superfamilies Homocrinacea and Cincinnaticrinacea (Echinodermata: Crinoidea), Ordovician–Silurian, North America. Bulletins of American Paleontology, 72(296), 138 p.Google Scholar
Waters, J. A., Broadhead, T. W., and Horowitz, A. S. 1982. The evolution of Pentremites (Blastoidea) and Carboniferous crinoid community succession, p. 133138. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the International Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Waters, J. A., and Maples, C. G. 1991. Mississippian pelmatozoan community reorganization: a predation-mediated faunal change. Paleobiology, 17:400410.CrossRefGoogle Scholar
Watkins, R., and Hurst, J. M. 1977. Community relations of Silurian crinoids at Dudley, England. Paleobiology, 3:207217.CrossRefGoogle Scholar
Webster, G. D., and Lane, N. G. 1967. Additional Permian crinoids from southern Nevada. University of Kansas Paleontological Contributions Paper, 27, 32 p.Google Scholar
Webster, G. D., and Jell, P. A. 1992. Permian Echinoderms from Western Australia. Memoirs of the Queensland Museum, 32:311373.Google Scholar
Westrop, S. R. 1996. Temporal persistence and stability of Cambrian biofacies: Sunwaptan (Upper Cambrian) trilobite faunas of North America, p. 3346. In Ivany, L. C. and Schopf, K. M. (eds), New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 127.Google Scholar
Whittaker, R., 1977. Evolution of species diversity in land communities. Evolutionary Biology, 10:167.Google Scholar