Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T10:25:22.333Z Has data issue: false hasContentIssue false

Bar orientation discrimination in the cat

Published online by Cambridge University Press:  02 June 2009

Peter De Weerd
Affiliation:
Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit te Leuven, Campus Gasthuisberg, Herestraat, B-3000 Leuven, Belgium
Erik Vandenbussche
Affiliation:
Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit te Leuven, Campus Gasthuisberg, Herestraat, B-3000 Leuven, Belgium
Guy A. Orban
Affiliation:
Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit te Leuven, Campus Gasthuisberg, Herestraat, B-3000 Leuven, Belgium

Abstract

We have measured orientation-discrimination thresholds of 4 deg in the cat, confirming an earlier study of Vandenbussche and Orban (1983). Unlike Vandenbussche and Orban (1983), we found that orientation-discrimination performance is not better at principal, as compared to oblique, reference orientations (no oblique effect). Despite the absence of the oblique effect, and despite the discrimination thresholds which were elevated by a factor of 4 compared to humans, orientation-discrimination performance of cats and humans is qualitatively similar in a number of aspects. First, orientation-discrimination performance as a function of length and contrast is qualitatively similar to human performance. Second, as in humans, detection and discrimination of the stimuli are closely related. Finally, randomizing the contrast between the stimuli does not affect orientation-discrimination performance. This suggests that similar computations underlay orientation-discrimination performance in both species. In summary, our results confirm that the cat is a useful model for human orientation-discrimination performance.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkley, M.A. & Bush, R. (1983). Intracortical processing of visual contour information in cats. Experimental Brain Research 50, 397407.Google Scholar
Berkley, M.A. (1970). Visual discriminations in the cat. In Animal Psychophysics, ed. Stebbins, W., pp. 231247. New York: Appleton Century Crofts.Google Scholar
Berkley, M.A. & Warmath, D.S. (1974). Line orientation sensitivity in the cat: behavioral measures. Association for Research in Ophthalmology, Sarasota, Florida.Google Scholar
Berkley, M.A. & Sprague, J.M. (1979). Striate cortex and visual acuity functions in the cat. Journal of Comparative Neurology 187, 679702.CrossRefGoogle ScholarPubMed
Bradley, A., Skottun, B.C., Ozahwa, I., Sclar, G. & Freeman, R.D. (1987). Visual orientation and spatial-frequency discrimination: a comparison of single neurons and behaviour. Journal of Neurophysiology 57, 755772.Google Scholar
Burbeck, C.A. & Regan, D. (1983). Independence of orientation and size in spatial discriminations. Journal of the Optical Society of America 73, 16911694.CrossRefGoogle ScholarPubMed
Dean, A.F. (1981). The relationship between response amplitude and contrast for cat striate cortical neurons. Journal of Physiology (London) 318, 413427.Google Scholar
De Weerd, P., Vandenbussche, E. & Orban, G.A. (1990). Speeding up visual discrimination learning in cats by differential exposure of positive and negative stimuli. Behavioral Brain Research 36, 112.CrossRefGoogle ScholarPubMed
Hammond, P. & Andrews, D.P. (1978). Orientation tuning of cells in area 17 and 18 of the cat's visual cortex. Experimental Brain Research 31, 341351.Google ScholarPubMed
Heggelund, P. & Albus, K. (1978). Response variability and orientation discrimination in single cells in striate cortex of cat. Experimental Brain Research 32, 197211.CrossRefGoogle ScholarPubMed
Henry, G.H., Dreher, B. & Bishop, P.O. (1974 a). Orientation specificity of cells in cat striate cortex. Journal of Neurophysiology 37, 13941409.CrossRefGoogle ScholarPubMed
Henry, G.H., Bishop, P.O., Tupper, R.M. & Dreher, B. (1973). Orientation specificity and response variability of cells in the striate cortex. Vision Research 13, 17711779.Google Scholar
Henry, G.H., Bishop, P.O., Tupper, R.M. & Dreher, B. (1974 b). Orientation axis and direction as stimulus parameters for striate cells. Vision Research 14, 767777.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1959). Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology (London) 148, 574591.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 229289.CrossRefGoogle Scholar
Kato, H., Bishop, P.O. & Orban, G.A. (1978). Hypercomplex and simple/complex cell classification in cat striate cortex. Journal of Neurophysiology 41, 10711095.CrossRefGoogle ScholarPubMed
Orban, G.A., Vandenbussche, E., Sprague, J.M. & De, Weerd P. (1988). Stimulus contrast and visual cortical lesions. Experimental Brain Research 72, 191194.Google Scholar
Orban, G.A., Vandenbussche, E. & Vogels, R. (1984). Human orientation discrimination tested with long stimuli. Vision Research 24, 121128.CrossRefGoogle ScholarPubMed
Orban, G.A., Vandenbussche, E., Sprague, J.M. & De, Weerd P.(1990). Orientation discrimination in the cat: a distributed function. Proceedings of the National Academy of Sciences of the U.S.A. 87, 11341138.Google Scholar
Paradiso, M.A. (1988). A theory for the use of visual orientation information which exploits the columnar structure of the striate cortex. Biological Cybernetics 58, 3549.Google Scholar
Regan, D. & Beverley, K.I. (1983). Spatial-frequency discrimination and detection: comparison of postadaptation thresholds. Journal of the Optical Society of America 73, 16841690.Google Scholar
Regan, D. & Beverley, K.I. (1985). Postadaptation orientation discrimination. Journal of the Optical Society of America A2, 147155.Google Scholar
Rose, D. & Blakemore, C. (1974). An analysis of orientation selectivity in the cat&s visual cortex. Experimental Brain Research 20, 117.Google Scholar
Skottun, B.C., Bradley, A., Sclar, G., Ohzawa, I. & Freeman, R.(1987). The effects of contrast on visual orientation and spatial-frequency discrimination: a comparison of single cells and behaviour. Journal of Neurophysiology 57, 773786.Google Scholar
Skottun, B.C. & Freeman, R.D. (1984). Stimulus specificity of binocular cells in cat&s visual cortex: ocular dominance and the matching of left and right eyes. Experimental Brain Research 56, 206216.Google Scholar
Smith, B.G. & Thomas, J.P. (1989). Why are some spatial discriminations independent of contrast? Journal of the Optical Society of America A6, 713724.CrossRefGoogle ScholarPubMed
Thomas, J.P. (1983). Underlying psychometric function for detecting gratings and identifying spatial frequency. Journal of the Optical Society of America 73, 751758.CrossRefGoogle ScholarPubMed
Thomas, J.P., Gille, J. & Barker, R.A. (1982). Simultaneous visual detection and identification: theory and data. Journal of the Optical Society of America 72, 16421651.Google Scholar
Tolhurst, D.J., Movshon, J.A. & Dean, A.F. (1983). The statistical reliability of signals in single neurons in cat and monkey striate cortex. Vision Research 23, 775785.CrossRefGoogle Scholar
Vandenbussche, E. & Orban, G.A. (1983). Meridional variations in the line Orientation discrimination of the cat. Behavioral Brain Research 9, 237255.Google Scholar
Vandenbussche, E., Orban, G.A. & Maes, H. (1983). Influence of line length on the orientation-discrimination performance of the cat. Archives Internationales de Physiologie et de Biochimie 91, P 25.Google Scholar
Vogels, R. & Orban, G.A. (1985). The effect of practice on the oblique effect in line orientation judgments. Vision Research 25, 16791688.Google Scholar
Vogels, R. & Orban, G.A. (1989). Orientation-discrimination thresholds of single cells in the discriminating monkey. Society for Neuroscience Abstracts 15, 324.Google Scholar
Watson, A.B. & Robson, J.G. (1981). Labeled detectors in human vision. Vision Research 21, 11151122.Google Scholar
Watt, R.J. (1984). Towards a general theory of the visual acuities for shape and spatial arrangement. Vision Research 24, 13771386.Google Scholar
Wetherill, G.B. & Levitt, R. (1965). Sequential estimation of points on a psychometrical function. British Journal of Mathematical and Statistical Psychology 18, 110.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Regan, D. (1984). Spatial-frequency adaptation and grating discrimination: predictions of a line-element model. Journal of the Optical Society of America A1, 10911096.Google Scholar
Wilson, H.R. & Gelb, J.G. (1984). A modified line-element theory for spatial-frequency and width discrimination. Journal of the Optical Society of America A1, 124131.CrossRefGoogle ScholarPubMed