Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T11:19:41.007Z Has data issue: false hasContentIssue false

Development of flash-evoked responses in the ectostriatum of the zebra finch: An evoked potential and current-source-density analysis

Published online by Cambridge University Press:  02 June 2009

J. Engelage
Affiliation:
Universität Bielefeld, Fakultät für Biologie, Lehrstuhl für Verhaltensphysiologie, Federal Republic of Germany
H.-J. Bischof
Affiliation:
Universität Bielefeld, Fakultät für Biologie, Lehrstuhl für Verhaltensphysiologie, Federal Republic of Germany

Abstract

The morphological development of the tectofugal pathway in the zebra finch has recently been described in a series of studies from our laboratory. No data are currently available on the development of visual responsiveness in this pathway. We therefore investigated the development of visually evoked potentials (VEPs) in the ectostriatum, the telencephalic target area of the tectofugal pathway. Contralateral VEPs could already be recorded in 20-day-old birds, whereas ipsilateral VEPs could first be recorded in 40-day-old birds. The latencies of contralateral VEPs decrease to adult values between 20 and 40 days of age, probably due to an increase in the myelination of afferent fibers. The amplitudes of the contralateral VEPs increase continuously from day 20 to day 60; however, between 60 and 80 days of age the responses diminish substantially (−60%). Thus, contralateral VEPs in 80-day-old birds are not significantly different from those in 20-day-old birds. Thereafter the responses recover and reach their final amplitude values at about 150 days of age. The relationship of these results to morphological studies and possible mechanisms which may cause the double-peaked development of visual-evoked potentials in the ectostriatum are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benowitz, L.J. & Karten, H.J. (1976). Organisation of the tectofugal visual pathway in the pigeon. A retrograde transport study. Journal of Comparative Neurology 167, 503520.CrossRefGoogle Scholar
Bischof, H.-J. (1981). A stereotaxic headholder for small birds. Brain Research Bulletin 7, 435436.CrossRefGoogle ScholarPubMed
Bischof, H.-J. (1985). Environmental influences on early development: a comparison of imprinting and cortical plasticity. In Perspectives of Ethology Vol. 6: Mechanisms, ed. Bateson, P. & Klopfer, P., pp. 292300. New York: Plenum Press.Google Scholar
Bischof, H.-J. (1988). The visual field and visually guided behaviour in the zebra finch. Journal of Comparative Physiology A 163, 329337.CrossRefGoogle Scholar
Changeux, J.P. & Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705712.CrossRefGoogle ScholarPubMed
Cohen, D.H. & Karten, H.J. (1974). The structural organisation of the avian brain: an overview. In Birds, Brain, and Behaviour, ed. Goodman, I.J. & Schein, M.W., pp. 2973. New York: Academic Press.Google Scholar
Engelage, J. & Bischof, H.J. (1988). Enucleation enhances ipsilateral flash evoked responses in the ectostriatum of the zebra finch (Taeniopygia guttata castanotis gould). Experimental Brain Research 70, 7989.CrossRefGoogle ScholarPubMed
Engelage, J. & Bischof, H.J. (1989). Flash evoked potentials in the ectostriatum of the zebra finch: a current source-density analysis. Experimental Brain Research 74, 563572.CrossRefGoogle Scholar
Engelage, J. & Bischof, H.J. (1990). Visual wulst influences on flash evoked responses in the ectostriatum of the zebra finch (Taeniopygia gutta castanotis) (submitted).CrossRefGoogle Scholar
Freemann, J.A. & Stone, J. (1969). A technique for current source-density analysis of field potentials and its application to the frog cerebellum. In Neurobiology of Cerebellar Evolution and Development, ed. Llinas, R., pp. 421430. Chicago, Illinois: American Medical Association.Google Scholar
Herrmann, K. & Bischof, H.-J. (1986 a). Delayed development of song control nuclei in the zebra finch is related to behaviourial development. Journal of Comparative Neurology 245, 167175.CrossRefGoogle Scholar
Herrmann, K. & Bischof, H.-J. (1986 b). Monocular deprivation affects neuron size in the ectostriatum of the zebra finch brain. Brain Research 379, 143146.CrossRefGoogle ScholarPubMed
Herrmann, K. & Bischof, H.-J. (1986 c). Effects of monocular deprivation in the nucleus rotundus of zebra finches: a deoxyglucose and Nissl study. Experimental Brain Research 64, 119126.CrossRefGoogle Scholar
Herrmann, K. & Bischof, H.-J. (1988 a). The sensitive period for the morphological effects of monocular deprivation in two nuclei of the tectofugal pathway of zebra finches. Brain Research 451, 4353.CrossRefGoogle ScholarPubMed
Herrmann, K. & Bischof, H.-J. (1988 b). The development of neurons of normal and monocularly deprived zebra finches: a quantitative Golgi study. Journal of Comparative Neurology 277, 141154.CrossRefGoogle ScholarPubMed
Llinas, R. & Nicholson, C. (1974). Analysis of field potentials in the central nervous system. In Handbook of EEG and Clinical Neurophysiology, ed. Remond, A.Vol. 2 Electrical Activity From the Neuron to the EEC and EMO, ed. O. Creutzfeldt, pp. 6292. Amsterdam, Netherlands: Elsevier.Google Scholar
Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews 65, 37100.CrossRefGoogle ScholarPubMed
Mitzdorf, U. & Singer, W. (1977). Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source-density. Journal of Neurophysiology 40, 12271244.CrossRefGoogle Scholar
Mitzdorf, U. & Singer, W. (1978). Prominent excitatory pathways in the cat visual cortex (A17 and A18): a current source-density analysis of electrically evoked potentials. Experimental Brain Research 33, 371394.CrossRefGoogle Scholar
Nicholson, C. & Freeman, J.A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology 38, 356368.CrossRefGoogle ScholarPubMed
Nixdorf, B.N. & Bischof, H.-J. (1982). Afferent connections of the ectostriatum and visual wulst in the zebra finch (Taeniopygia guttata castanotis gould). A HRP study. Brain Research 248, 917CrossRefGoogle Scholar
Nixdorf, B.E. (1986). Synaptogenese und Plastizität im tectofugalen System des Zebrafinken: Eine quantitative elektronen-mikroskopische Analyse. Thesis, Universität Bielefeld.Google Scholar
Nixdorf, B.E. & Bischof, H.-J. (1987). Ultrastructural effects of monocular deprivation in the neuropil of nucleus rotundus in the zebra finch: a quantitative electron microscopic study. Brain Research 405, 326336.CrossRefGoogle Scholar
Pettigrew, J.D. & Konishi, M. (1976 a). Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl (Tyto alba). Science 193, 675678.CrossRefGoogle ScholarPubMed
Pettogrew, J.D. & Konishi, M. (1976 b). Effects of monocular deprivation on binocular neurons in the owl's visual wulst. Nature 264, 753754.CrossRefGoogle Scholar
Pröve, E. (1983). Hormonal correlates of behaviourial development in male zebra finches. In Hormones and Behaviour in Higher Vertebrates, ed. Balthazart, J., Pröve, E. & Gilles, R., pp. 368374. New York: Springer.CrossRefGoogle Scholar
Ritchie, T.C. & Cohen, D.H. (1977). The avian tectofugal visual pathway: projections of its telencephalic target, the ectostriatal complex. Society for Neuroscience Abstracts 3, 94.Google Scholar
Serventy, D.L., Nicholis, C.A. & Farner, D.S. (1967). Pneumatization of the cranium of the zebra finch (Taeniopygia castanotis). Ibis 109, 570578.CrossRefGoogle Scholar
Sinclair, J.D. (1988). Multiple t−tests are appropriate in science. TIPS, 9, 1213.Google ScholarPubMed