Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T05:44:00.887Z Has data issue: false hasContentIssue false

Eye alignment and cortical binocularity in strabismic kittens: A comparison between tenotomy and recession

Published online by Cambridge University Press:  02 June 2009

Ruxandra Sireteanu
Affiliation:
Max-Planck-Institute for Brain Research, Frankfurt/Main 71, Germany
Wolf Singer
Affiliation:
Max-Planck-Institute for Brain Research, Frankfurt/Main 71, Germany
Maria Fronius
Affiliation:
Max-Planck-Institute for Brain Research, Frankfurt/Main 71, Germany
Joachim M. Greuel
Affiliation:
Max-Planck-Institute for Brain Research, Frankfurt/Main 71, Germany
Johannes Best
Affiliation:
Max-Planck-Institute for Brain Research, Frankfurt/Main 71, Germany
Adriana Fiorentini
Affiliation:
Istituto di Neurofisiologia del CNR, Pisa, Italy
Silvia Bisti
Affiliation:
Istituto di Neurofisiologia del CNR, Pisa, Italy
Costantino Schiavi
Affiliation:
Clinica Oculistica, Universit´ di Modena, Modena, Italy
Emilio Campos
Affiliation:
Clinica Oculistica, Universit´ di Modena, Modena, Italy

Abstract

Interocular alignment was assessed by corneal light reflex photography in 15 normal and 26 strabismic kittens. Strabismus was induced at 3–4 weeks of age by severing one extraocular muscle (tenotomy), by cutting and reinserting the muscle at another position on the ocular globe (recession), or by combining recession of the medial rectus muscle with resection of the lateral rectus muscle of the same eye. Nineteen strabismic and five normal kittens were followed longitudinally from 12 days to about 6 months of age.

Three out of the six longitudinally followed tenotomized cats and six out of the 13 recessed cats conserved their postoperative ocular deviation throughout the testing period (“large-angle strabismics”). Three tenotomized and seven recessed cats showed a transient deviation for 1–2 weeks after surgery, after which the interocular deviation diminished to values found in normal cats (“microstrabismic” cats). Both recessed-resected cats showed a transient interocular deviation.

In spite of their different developmental histories, all cats showed a clear breakdown of binocularity in area 17. Large-angle strabismics showed a dominance of the non-operated eye, while in microstrabismic cats, both eyes were equally effective in driving cortical cells. It thus appears that a transient strabismus is sufficient to produce a reduction of binocularity in area 17.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aulhorn, E. (1968). Erfahrungen mit der Phasendifferenzhaploskopie. Berichte der Deutschen Ophthalmologischen Gesellschaft 69, 593598.Google Scholar
Aust, W. & Welge-Lüssen, L. (1969). Prä- und postoperative Schielwinkelschwankungen nach längerem präoperativem Schielwinkelausgleich. Klinische Monatsblätter der Augenheilkunde 155, 494503.Google Scholar
Bagolini, B., Zanassi, M.R. & Bolzani, R. (1986). Surgical correction of convergent strabismus: Its relationship to prism compensation. Documenta Ophthalmologica 62, 309324.CrossRefGoogle ScholarPubMed
Baker, F.H., Grigg, P. & Von Noorden, G.K. (1974). Effects of visual deprivation and strabismus on the response of neurones in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Research 66, 185208.CrossRefGoogle Scholar
Berardi, N., Bisti, S., Fiorentini, A. & Maffei, L. (1981). Section of the ophthalmic branch of the fifth nerve in the cat: Neural and behavioural effects. In Pathophysiology of the Visual System, ed. Maffei, L., pp. 109116. The Hague, Holland: W. Junk.Google Scholar
Bishop, P.O., Kozax, W. & Vakkur, G.J. (1962). Some quantitative aspects of the cat’s eye: Axis and plane of reference, visual field coordinates and optics. Journal Physiology (London) 163, 466502.CrossRefGoogle ScholarPubMed
Campos, E.C. & Bagolini, B. (1978). Der senso-motorische Aspekt des anomalen Binokularsehens: Die anomalen Fusionsbewegungen. In Disorders of Ocular Motility, ed. Kommerell, G., pp. 335339. München: Bergmann.Google Scholar
Cynader, M., Gardner, J.C. & Mustari, M. (1984). Effects of neonatally induced strabismus on binocular responses in cat area 18. Experimental Brain Research 53, 384399.CrossRefGoogle ScholarPubMed
Duke-Elder, S. & Wybar, K. (1973). System of Ophthalmology. Ocular Motility and Strabismus, ed. Duke-Elder, S.London: Kimpton.Google Scholar
Gordon, B.G. & Gummow, L. (1975). Effects of extraocular muscle section on receptive fields in superior colliculus. Vision Research 15, 10111019.CrossRefGoogle ScholarPubMed
Gordon, B. & Presson, J. (1977). Effects of alternating occlusion on receptive fields in cat superior colliculus. Journal of Neurophysiology 60, 14061414.CrossRefGoogle Scholar
Halldén, U. (1952). Fusional phenomena in anomalous correspondence. Ada Ophthalmologica (Suppl.) 37, 193.Google ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160, 106154.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology, 28 10411059.CrossRefGoogle ScholarPubMed
Ikeda, H. (1980). Visual acuity, its development and amblyopia. Journal of the Royal Society of Medicine 73, 546555.CrossRefGoogle ScholarPubMed
Kalil, R.E., Spear, P.D. & Langsetmo, A. (1984). Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus. Journal of Neurophysiology 52, 514537.CrossRefGoogle ScholarPubMed
Maffei, L. & Bisti, S. (1976). Binocular interaction in strabismic kittens deprived of vision. Science 191, 579580.CrossRefGoogle ScholarPubMed
Maffei, L. & Fiorentini, A. (1976). Asymmetry of motility of the eyes and change of binocular properties of cortical cells in adult cats. Brain Research 105, 7378.CrossRefGoogle ScholarPubMed
Olson, C.R. & Freeman, R.D. (1978). Development of eye alignment in cats. Nature 271, 446447.CrossRefGoogle ScholarPubMed
Schildwächter-Von Langenthal, A., Kommerell, G., Klein, U. & Simonsz, H. J. (1989). Preoperative prism adaptation test in normosensoric strabismus. Clinical Experimental Ophthalmology 227, 206208.Google ScholarPubMed
Schoppmann, A. & Hoffmann, K.-P. (1985). The development of eye alignment in normal and naturally microstrabismic cats. Investigative Ophthalmology and Visual Science 26, 350358.Google Scholar
Sherman, S.M. (1972). Development of interocular alignment in cats. Brain Research 37, 187203.CrossRefGoogle ScholarPubMed
Sireteanu, R. (1982). Binocular vision in strabismic humans with alternating fixation. Vision Research 11, 889896.CrossRefGoogle Scholar
Sireteanu, R. (1991). Restricted visual fields in both eyes of kittens raised with a unilateral surgically induced strabismus: Relationship to extrastriate cortical binocularity. Clinical Vision Sciences 6, 277287.Google Scholar
Sireteanu, R. & Best, J. (1989). Squint-induced modification of receptive-field properties of single cells in the lateral suprasylvian cortex of the cat: Evidence for anomalous correspondence. Investigative Ophthalmology and Visual Science 30(3), 315.Google Scholar
Sireteanu, R. & Best, J. (1992). Squint-induced modification of visual receptive field properties in the lateral suprasylvian area of the cat: Evidence for anomalous correspondence. European Journal of Neuroscience 4, 235242.CrossRefGoogle Scholar
Sireteanu, R., Best, J. & Greuel, J. (1988). Squint-induced modification of receptive-field properties in single cells of the lateral suprasylvian area of the cat. European Journal of Neuroscience (Suppl.), 270.Google Scholar
Sireteanu, R. & Fronius, M. (1986). Verzerrte Raumwahrnehmung bei Amblyopen. Zeitschrift für praktische Augenheilkunde 7, 243246.Google Scholar
Sireteanu, R. & Fronius, M. (1989). Different patterns of retinal correspondence in the central and peripheral visual field of strabismics. Investigative Ophthalmology and Visual Science 30, 20232033.Google ScholarPubMed
Sireteanu, R., Fronius, M. & Singer, W. (1981). Binocular interaction in the peripheral visual field of humans with strabismic and an-isometropic amblyopia. Vision Research 21, 10651074.CrossRefGoogle ScholarPubMed
Sireteanu, R., Katz, B., Mohn, G. & Vital-Durand, G. (1992). Teller acuity cards for testing visual development and the effects of experimental manipulation in macaques. Clinical Vision Sciences 7, 107117.Google Scholar
Sireteanu, R., Singer, W., Fronius, M., Greuel, J. & Best, J. (1990). Longitudinal development of eye alignment in kittens with two types of surgically induced strabismus: Relationship to extrastriate cortical binocularity. Society for Neuroscience Abstracts 16, 963.Google Scholar
Von Grünau, M.W. (1979). The role of maturation and visual experience in the development of eye alignment in cats. Experimental Brain Research 37, 4147.CrossRefGoogle ScholarPubMed
Von Noorden, G.K. & Dowling, J.E. (1970). Experimental amblyopia in monkeys. II. Behavioural studies of strabismic amblyopia. Archives of Ophthalmology 84, 215220.CrossRefGoogle ScholarPubMed
Wiesel, T.N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature 299, 583592.CrossRefGoogle ScholarPubMed