Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T18:25:19.106Z Has data issue: false hasContentIssue false

Characterization of a novel form of X-linked incomplete achromatopsia

Published online by Cambridge University Press:  05 April 2005

MICHAEL A. CROGNALE
Affiliation:
University of Nevada at Reno
MICHAEL FRY
Affiliation:
University of Nevada at Reno
JENNIFER HIGHSMITH
Affiliation:
University of Nevada at Reno
GUNILLA HAEGERSTROM-PORTNOY
Affiliation:
University of California, Berkeley
MAUREEN NEITZ
Affiliation:
Medical College of Wisconsin, Milwaukee
JAY NEITZ
Affiliation:
Medical College of Wisconsin, Milwaukee
MICHAEL A. WEBSTER
Affiliation:
University of Nevada at Reno

Abstract

X-linked incomplete achromatopsia (XIA), also called blue-cone monochromacy (BCM), is a rare cone disorder that most commonly results either from one of two conditions.. The first condition is a deletion of the locus control region (LCR) which is a critical DNA element that lies upstream of the L and M photopigment gene array on the X-chromosome and is necessary for expression of the photopigment genes. The second condition is an inactivating point mutation within the coding sequence of the remaining photopigment gene in an array from which all but one gene has been deleted. Many previous studies have concluded that affected individuals either have only rods and S-cones (Blackwell & Blackwell, 1957, 1961; Daw & Enoch, 1973; Hess et al., 1989) or have rods, S-cones, and another cone type that contains the rod pigment (Pokorny et al., 1970; Alpern et al., 1971). However, Smith et al. (1983) described individuals with XIA who had residual L-cone function. Here we report results for a subject with XIA who appears to have residual M-cone function. Genetic analysis revealed that he had apparently normal genes for M-cone photopigment thus leaving open the possibility that he has a contribution to vision based on expression of these genes at a very low level.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpern, M., Lee, G.B., Maaseidvang, F., & Miller, S.S. (1971). Color vision in blue-cone monochromacy. Journal of Physiology 212, 211233.CrossRefGoogle Scholar
Blackwell, H.R. & Blackwell, O.M. (1957). Blue mono-cone monochromacy: A new color vision defect. Journal of the Optical Society of America 47, 338.Google Scholar
Blackwell, H.R. & Blackwell, O.M. (1961). Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia. Vision Research 1, 62107.CrossRefGoogle Scholar
Carroll, J., Bialozynski, C., Summerfelt, P., Neitz, M., & Neitz, J. (2000). Estimates of L:M cone ratios from ERG flicker photometry and genetics. Investigative Ophthalmology and Visual Science (Suppl.) 41, S808.Google Scholar
Carroll, J., Neitz, M., & Neitz, J. (2002). Estimates of L:M cone ratio from ERG flicker photometry and genetics. Journal of Vision 2, 531542.Google Scholar
Cavanagh, P., MacLeod, D.I.A., & Anstis, S.M. (1987). Equiluminance: Spatial and temporal factors and the contribution of blue-sensitive cones. Journal of the Optical Society of America A 4, 14281438.CrossRefGoogle Scholar
Crognale, M.A., Switkes, E., Rabin, J., Schneck, M.E., Haegerström-Portnoy, G., & Adams, A.J. (1993). Application of the spatio-chromatic visual evoked potential to detection of congenital and acquired color deficiencies. Journal of the Optical Society of America 10, 18181825.CrossRefGoogle Scholar
Crognale, M.A., Teller, D.Y., Yamaguchi, T., Motulsky, A., & Deeb, S.S. (1999). Analysis of red/green color discrimination in subjects with a single X-linked photopigment gene. Vision Research 39, 707719.CrossRefGoogle Scholar
Crognale, M.A., Nolan, J.B., Webster, M.A., Neitz, M., & Neitz, J. (2001). Color vision and genetics in a case of cone dysfunction syndrome. Color Research and Application 26, S284S287.3.0.CO;2-H>CrossRefGoogle Scholar
Daw, N.W. & Enoch, J.M. (1973). Contrast sensitivity, Westheimer function and Stiles-Crawford effect in a blue cone monochromat. Vision Research 13, 16691680.CrossRefGoogle Scholar
Haegerstrom-Portnoy, G. & Verdon, W. (1991). Transient tritanopia in a blue cone monochromat. Clinical Vision Science 6, 229240.Google Scholar
Haegerstrom-Portnoy, G. & Verdon, W. (1999). Rods induce transient tritanopia in blue cone monochromats. Vision Research 39, 22752284.CrossRefGoogle Scholar
Hayashi, T., Motulsky, A.G., & Deeb, S.S. (1999). Position of a ‘green–red’ hybrid gene in the visual pigment array determines colour-vision phenotype. Nature Genetics 22, 9093.CrossRefGoogle Scholar
He, J.C. & Shevell, S.K. (1995). Variation in color matching and discrimination among deuteranomalous trichromats: Theoretical implications of small differences in photopigments. Vision Research 35, 25792588.CrossRefGoogle Scholar
Hess, R.F., Mullen, K.T., Sharpe, L.T., & Zrenner, E. (1989). The photoreceptors in atypical achromatopsia. Journal of Physiology 417, 123149.CrossRefGoogle Scholar
Kainz, P.M., Neitz, M., & Neitz, J. (1998). Molecular genetic detection of female carriers of protan defects. Vision Research 38, 33653369.CrossRefGoogle Scholar
Nathans, J., Thomas, D., & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232, 193202.CrossRefGoogle Scholar
Nathans, J., Davenport, C.M., Maumenee, I.H., Lewis, R.A., Hejtmancik, J.F., Litt, M., Lovrien, E., Weleber, R., Bachynski, B., Zwas, F., Klingaman, R., & Fishman, G. (1989). Molecular genetics of blue cone monochromacy. Science 245, 831838.CrossRefGoogle Scholar
Nathans, J., Maumenee, I.A., Zrenner, E., Sadowski, B., Sharpe, L.T., Lewis, R.A., Hansen, E., Rosenberg, P., Schwartz, M., Heckenlively, J.R., Trabousli, E., Klingaman, R., Bech-hansen, N.T., LaRouche, G.R., Pagon, R.A., Murphy, W.H., & Weleber, R.G. (1993). Genetic heterogeneity among blue-cone monochromats. American Journal of Human Genetics 53, 9871000.Google Scholar
Neitz, M. & Neitz, J. (2001). A new test for mass screening of school age children for red–green color vision defects. Color Research and Application 26, S239S249.3.0.CO;2-L>CrossRefGoogle Scholar
Neitz, M., Neitz, J., & Jacobs, G.H. (1991). Spectral tuning of pigments underlying red–green color vision. Science 252, 971974.CrossRefGoogle Scholar
Neitz, M., Bollinger, K., & Neitz, J. (2002) Middle-wavelength sensitive photopigment gene expression is absent in deuteranomalous colour vision. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny & J., Knoblauch, K., pp. 318327. Oxford, England: Oxford University Press.
Nolan, J.B., Crognale, M.A., & Webster, M.A. (2003). Colour naming, colour categories, and central colour-coding in a case of x-linked incomplete achromatopsia. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J., & Knoblauch, K., pp. 370377. Oxford, England: Oxford University Press.CrossRef
Pokorny, J., Smith, V.C., & Swartley, R. (1970). Threshold measurements of spectral sensitivity in a blue monocone monochromat. Investigative Ophthalmology 9, 807813.Google Scholar
Rabin, J., Switkes, E., Crognale, M.A., Schneck, M.E., & Adams, A.J. (1994). Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing. Vision Research 34, 26572671.CrossRefGoogle Scholar
Sjoberg, S.A., Neitz, M., Balding, S.D., & Neitz, J. (1998). L-cone pigment genes expressed in normal colour vision. Vision Research 38, 32133219.CrossRefGoogle Scholar
Smith, V.C., Pokorny, J., Delleman, J.W., Cozijnsen, M., Houtman, W.A., & Went, L.N. (1983). X-linked incomplete achromatopsia with more than one class of functional cones. Investigative Ophthalmology and Visual Science 24, 451457.Google Scholar
Webster, M.A. & Mollon, J.D. (1997). Motion minima for different directions in color space. Vision Research 37, 14791498.CrossRefGoogle Scholar
Winderickx, J., Battisti, L., Hibibya, Y., Motulsky, A.G., & Deeb, S.S. (1993). Haplotype diversity in the human red and green opsin genes: Evidence for frequent sequence exchange in exon 3. Human Molecular Genetics 2, 14131421.CrossRefGoogle Scholar