Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-21T05:01:20.605Z Has data issue: false hasContentIssue false

Absorption, Translocation, and Metabolism of Mesotrione in Grain Sorghum

Published online by Cambridge University Press:  20 January 2017

M. Joy M. Abit
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Kassim Al-Khatib*
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: khatib@ksu.edu

Abstract

Studies were conducted under controlled growth conditions to determine whether differential absorption, translocation, or metabolism was the basis for the differential response of grain sorghum hybrids to mesotrione. Mesotrione-tolerant (‘Dekalb DKS35-70’) and mesotrione-susceptible (‘Pioneer 84G62’) grain sorghum hybrids were treated with 14C-labeled mesotrione. At 1 d after treatment (DAT), absorption was 7% in both hybrids; at 7 DAT, however, absorption remained nearly steady in Pioneer 84G62 but increased to 12% in Dekalb DKS35-70. Translocation of 14C-mesotrione in sorghum hybrids was similar with less than 30% of the absorbed herbicide translocated out of the treated leaf by 7 DAT. A distinct metabolite of 14C-mesotrione was separated in both hybrids at 3 DAT. The amount of mesotrione parent compound that remained in Pioneer 84G62 and DKS35-70 was 72 and 65%, respectively. Dekalb DKS35-70 had significantly less mesotrione at 3 DAT than Pioneer 84G62 did, but the amount of mesotrione was similar for both hybrids at 5 and 7 DAT. Rapid metabolism of mesotrione may help explain the differential response of grain sorghum hybrids.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abit, M. J. M., Al-Khatib, K., Regher, D. L., Tuinstra, M. R., Claassen, M. M., Stahlman, P. W., Gordon, B. W., and Currie, R. S. 2009. Differential response of sorghum hybrids to foliar applied mesotrione. Weed Technol. 293:2833.Google Scholar
Alferness, P. and Wiebe, L. 2002. Determination of mesotrione residues and metabolites in crop, soil, and water by liquid chromatography with fluorescence detection. J. Agric. Food Chem. 50:39263934.Google Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol. 10:570575.Google Scholar
Armel, G. R., Hall, G. J., Wilson, H. P., and Cullen, N. 2005. Mesotrione plus atrazine mixtures for control of Canada thistle (Cirsium arvense). Weed Sci. 53:202211.Google Scholar
Armel, G. R., Mayonado, D. J., Hatzios, K. K., and Wilson, H. P. 2004. Absorption and translocation of SC-0051 in corn (Zea mays) and soybean (Glycine max). Weed Technol. 18:211214.Google Scholar
Armel, G. R., Wilson, H. P., Richardson, R. J., and Hines, T. E. 2003. Mesotrione combinations in no-till corn (Zea mays). Weed Technol. 17:111116.Google Scholar
Bartlett, D. W. and Hall, G. J. 2000. Mesotrione: uptake, translocation, and metabolism in corn compared to weeds. Pages 6566. in. Proceedings of the North Central Weed Science Society. Kansas City, MO Northern Central Weed Science Society.Google Scholar
Cannon, C. and Kummerow, F. A. 1957. A comparison of plant and grain wax from two varieties of sorghum. J. Am. Oil Chem. Soc. 34:519520.Google Scholar
Cranston, H. J., Kern, A. J., Hackett, J. L., Miller, E. K., Maxwell, B. D., and Dyer, W. E. 2001. Dicamba resistance to kochia. Weed Sci. 49:164170.Google Scholar
Demmig-Adams, B., Gilmore, A. M., and Adams, W. W. III. 1996. Carotenoids 3: in vivo functions of carotenoids in higher plants. FASEB J. 10:403412.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Foliar absorption of herbicides. Pages 2952. In Huber, L. A. and Bernhaut, K. Physiology of Herbicide Action. Englewood Cliffs, NJ PTR Prentice-Hall.Google Scholar
Hess, F. D. 2000. Review: Light-dependent herbicides: an overview. Weed Sci. 48:160170.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
Horky, K. T. and Martin, A. R. 2005. Evaluation of preemergence weed control programs in grain sorghum. Pages 3032. in. NCWSS Research Report-V.62: Weed Control in Specialty Crops. Lincoln, NE Northern Central Weed Science Society.Google Scholar
Kim, J. S., Kim, T. J., Kwon, O. K., and Cho, K. Y. 2001. Mechanism of action of sulcotrione in mature plant tissues. Pages 557562. in. Proceedings of the Brighton Crop Protection Conference (Weeds). Brighton, U.K. BCPC.Google Scholar
Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K., and Wichert, R. A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci. 57:120128.Google Scholar
Muller, P., Li, X. P., and Niyogi, K. K. 2001. Non-photochemical quenching: a response to excess light. Plant Physiol. 125:15581566.Google Scholar
Norris, S. R., Shen, X., and DellaPenna, D. 1998. Complementation of Arabidopsis pds1 mutant with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol. 117:13171323.Google Scholar
Schuster, C. L., Al-Khatib, K., and Dille, J. A. 2007. Mechanism of antagonism of mesotrione on sulfonylurea herbicides. Weed Sci . 55:429434.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. 233234.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 51:145150.Google Scholar
Taiz, L. and Zeiger, E. 2008. Plant Physiology. 4th ed. Sunderland, MA Sinauer Associates. 764.Google Scholar
Traore, M., Sullivan, C. Y., Rosowski, J. R., and Lee, K. W. 1989. Comparative leaf surface morphology and the glossy characteristic of sorghum, maize, and pearl millet. Anal. Bot. 64:447453.Google Scholar
Vencill, W. K., Grey, T. L., Culpepper, A. S., Shilling, D., and Webster, T. M. 2006. Physiology of glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Pages 22542258. in. Proceedings of the Beltwide Cotton Conference. San Antonio, TX National Cotton Council of America.Google Scholar
Wichert, R. A., Townson, J. K., Bartlett, D. W., and Foxon, G. A. 1999. Technical review of mesotrione, a new herbicide. Brighton Crop Prot. Conf. 1:105110.Google Scholar
Young, B. G. and Hart, S. E. 1998. Optimizing foliar activity of isoxaflutole on giant foxtail (Setaria faberi) with various adjuvants. Weed Sci. 46:397402.Google Scholar