Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T06:23:57.748Z Has data issue: false hasContentIssue false

Clodinafop changes the chlorophyll fluorescence induction curve

Published online by Cambridge University Press:  20 January 2017

Majid Abbaspoor
Affiliation:
Department of Agricultural Sciences, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark

Abstract

Clodionafop, an acetyl-coenzyme A carboxylase (ACCase) inhibitor, changed the shape of the chlorophyll fluorescence induction curve (Kautsky curve) in barley and oat in greenhouse experiments. Biomass ED50, based on log-logistic dose–response curves, for barley was considerably higher than that for oat in all experiments. Biomass ED50 and relative potency (ED50 [barley]/ED50 [oat]) were consistent among experiments when sprayed at the same phenological stage of plant development. Especially at high doses, clodinafop changed the shape of the Kautsky curve more for oat than for barley. From the numerous parameters that can be derived from the OJIP steps of the Kautsky curve, we found that (1) F vj, the relative changes at the J step [F vj = (F mF j)/F m], (2) area between Kautsky curve and maximum fluorescence (F m), and (3) F v/F m, maximum quantum efficiency of Photosystem II [F v/F m = (F mF 0)/F m], were closely linked to the biomass dose–response relationships for both species. The linkage between biomass and the fluorescence parameters may be used to shorten the screening period for ACCase inhibitors.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barbagallo, R. P., Oxborough, K., Pallett, K. E., and Baker, N. R. 2003. Rapid, non-invasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485493.CrossRefGoogle Scholar
Cabanne, F. 2000. Increased efficacy of clodinafop by terpineols and synergistic action with esterified fatty acids. Weed Res 40:181189.Google Scholar
Christensen, M. G., Teicher, H. B., and Streibig, J. C. 2003. Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag. Sci 59:13031310.Google Scholar
Darwent, A. L. and Moyer, J. R. 1999. Control of wild oat in the year of smooth brome grass establishment and its effect on the yield and quality of subsequent seed crops. Can. J. Plant Sci 79:447453.CrossRefGoogle Scholar
Fayez, K. A. 2000. Action of photosynthetic diuron herbicide on cell organelles and biochemical constituents of the leaves of two soybean cultivars. Pestic. Biochem. Physiol 66:105115.Google Scholar
Force, L., Critchley, C., and Rensen, J. V. 2003. New fluorescence parameters for monitoring photosynthesis in plants. Photosynth. Res 78:1733.CrossRefGoogle ScholarPubMed
Frankart, C., Eullaffroy, P., and Vernet, G. 2003. Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environ. Exp. Bot 49:159168.Google Scholar
Fufezan, C., Rutherford, A. W., and Liszkaya, A. K. 2002. Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407410.CrossRefGoogle ScholarPubMed
Giardi, M. T., Cona, A., and Geiken, B. 1995. Photosystem II cores phosphorylation heterogeneity and the regulation of electron transfer in higher plants: a review. Bioelectrochem. Bioenerg 38:6775.CrossRefGoogle Scholar
Govindjee, A. 1995. Kautsky-chlorophyll-a fluorescence. Aust. J. Plant Physiol 22:131160.Google Scholar
Govindjee, A., Xu, C., Schansker, G., and Rensen, J. V. 1997. Chloroacetates as inhibitors of photosystem II: effects on electron acceptor side. J. Photochem. Photobiol. B: Biol 37:107117.Google Scholar
Habbash, D., Percival, M. P., and Baker, N. R. 1985. Rapid chlorophyll fluorescence technique for the study of penetration of photosynthetically active herbicides into leaf tissue. Weed Res 25:389395.Google Scholar
Haefs, R., Eiberger, M. S., Mainx, H. G., Mittelstaedt, W., and Noga, G. 2002. Studies on a new group of biodegradable surfactants for glyphosate. Pest Manag. Sci 58:825833.Google Scholar
Hess, F. D. 2000. Light-dependent herbicides: an overview. Weed Sci 48:160170.Google Scholar
Hiraki, M., Rensen, J. J. S. V., Vredenberg, W. J., and Wakabayashi, K. 2003. Characterization of the alterations of the chlorophyll a fluorescence induction curve after addition of photosystem II inhibiting herbicides. Photosynth. Res 78:3546.Google Scholar
Hulsen, K., Minne, V., Lootens, P., Vandecasteele, P., and Hofte, M. 2002. A chlorophyll a fluorescence-based Lemna minor bioassay to monitor microbial degradation of nanomolar to micromolar concentrations of linuron. Environ. Microbiol 6:327337.Google Scholar
Kim, J. S., Jung, S., Hwang, I. T., and Cho, K. Y. 1999. Characteristics of chlorophyll a fluorescence induction in cucumber cotyledons treated with diuron, norflurazon and sulcotrionem. Pestic. Biochem. Physiol 65:7381.CrossRefGoogle Scholar
Klem, K., Spundova, M., Harabalova, H., Naus, J., Vanova, M., Masojidek, J., and Tomek, P. 2002. Comparison of chlorophyll fluorescence and whole-plant bioassays of isoproturon. Weed Res 42:335341.Google Scholar
Kotoula-Syka, E., Tal, A., and Rubin, B. 2000. Diclofop-resistant Lolium rigidum from northern Greece with cross-resistance to ACCase inhibitors and multiple resistance to chlorsulfuron. Pest Manag. Sci 56:10541058.Google Scholar
Letouze, A. and Gasquez, J. 2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in black grass (Alopecurus myosuroides Huds). Agronomie 23:601608.CrossRefGoogle Scholar
Luo, X. Y., Sunohara, Y., and Matsumoto, H. 2004. Fluazifop-butyl causes membrane peroxidation in the herbicide-susceptible broad leaf weed bristly starbur (Acanthospermum hispidum). Pestic. Biochem. Physiol 78:93102.CrossRefGoogle Scholar
Madsen, K. H., Heitholt, J. J., Duke, S. O., Smeda, R. V., and Streibig, J. C. 1995. Photosynthetic parameters in glyphosate-treated sugar beets (Beta vulgaris L). Weed Res 35:8188.Google Scholar
Matouskova, M., Naus, J., and Flasarova, M. 1999. A long-term response of chlorophyll fluorescence induction to one-shot application of cyanazine on barley plants and its relation to crop yield. Photosynthetica 37:281294.CrossRefGoogle Scholar
Medd, R. W., Vandeven, R. J., Pickering, D., and Nordblom, T. 2001. Determination of environment-specific dose-response relationships for clodinafop on Avena spp. Weed Res 41:351368.Google Scholar
Misra, A. N., Srivastava, A., and Strasser, R. J. 2001. Utilization of fast chlorophyll A fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. J. Plant Physiol 158:11731181.Google Scholar
Nisha, P., Singhal, R. S., and Pandit, A. B. 2004. A study on the degradation kinetics of visual green colour in spinach (Spinacea oleracea L.) and the effect of salt therein. J. Food Eng 64:135142.CrossRefGoogle Scholar
Pace, E., Pompili, L., Margonelli, A., Giradi, P., and Giardi, M. T. 2001. Pulse-chase experiments with (35S) methionine show D1 reaction II protein turnover in variously herbicide tolerant species. Pestic. Biochem. Physiol 69:9299.Google Scholar
Peltzer, D., Dreyer, E., and Polle, A. 2002. Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei . Plant Physiol. Biochem 40:141150.Google Scholar
Percival, M. P. and Baker, N. R. 1991. Herbicides and photosynthesis. Pages 126 in Baker, N. R. and Percival, M. P. eds. Herbicides. London: Elsevier.Google Scholar
Percival, M. P., Blowers, M. H., Green, J. W., and Baker, N. R. 1992. Chlorophyll fluorescence—a noninvasive technique for rapid investigation of the effects of adjuvants on herbicide and plant growth regular uptake by leaves. Pages 187193 in Foy, C. F. ed. Adjuvants for Agrichemicals. London: CRC.Google Scholar
Prado, J. L. D., Prado, R. A. D., and Shimabukuro, R. H. 1999. The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses. Pestic. Biochem. Physiol 63:114.Google Scholar
Roberts, A. G., Gregor, W., Britt, R. D., and Kramer, D. M. 2003. Acceptor and donor-side interactions of phenolic inhibitors in photosystem II. Biochim. Biophys. Acta 1604:2332.Google Scholar
Rodriguez, R. and Strasser, R. 2002. The laboratory of bioenergetics. http://www.unige.ch/sciences/biologie/bioen/bioindex.html.Google Scholar
Rutherford, A. W. and Krieger-Liszakay, A. 2001. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci 26:648653.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227.Google Scholar
Shimabukuro, R. H., Davis, D. G., and Hoffer, B. L. 2001. The effect of diclofop-methyl and its antagonist, vitamin E, on membrane lipids in oat (Avena sativa L.) and leafy spurge (Euphorbia esula L). Pestic. Biochem. Physiol 69:1326.CrossRefGoogle Scholar
Shimabukuro, R. H. and Hoffer, B. L. 1994. Effects of transmembrane proton gradient and lipid biosynthesis in the mode of action of diclofop-methyl. Pestic. Biochem. Physiol 48:8597.CrossRefGoogle Scholar
Shimabukuro, R. H. and Hoffer, B. L. 1996. Induction of ethylene as an indicator of senescence in mode of action of diclofop-methyl. Pestic. Biochem. Physiol 54:146158.CrossRefGoogle Scholar
Shimabukuro, R. H., Walsh, W. C., and Jacobsen, A. 1987. Aryl-O-glucoside of diclofop: a detoxification product in wheat shoots and wild oat cell suspension culture. J. Agric. Food Chem 35:393397.Google Scholar
Sofo, A., Dichio, B., Xiloyannis, C., and Masia, A. 2004. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293302.Google Scholar
Strasser, R. J., Srivastava, A., and Tsimilli-Michael, M. 2000. The fluorescence transient as a tool to characterise and screen photosynthetic samples. Pages 445483 in Yunus, M., Pathre, U., and Mohanty, P. eds. Probing Photosynthesis: Mechanisms, Regulation and Adaptation. London: Taylor & Francis.Google Scholar
Strasser, R. J. and Stirbet, A. D. 2001. Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O-J-I-P; fitting of experimental data to three different PS II models. Math. Comput. Simul 56:451461.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose-response curves and statistical models. Pages 2955 in Streibig, J. C. and Kudsk, P. eds. Herbicide Bioassays. London: CRC.Google Scholar
Tal, A., Kotoula-Syka, E., and Rubin, B. 2000. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Prot 19:467472.Google Scholar
Tal, A., Zarka, S., and Rubin, B. 1996. Fenoxaprop-P resistance in Phalaris minor conferred by an insensitive acetyl-coenzyme a carboxylase. Pestic. Biochem. Physiol 56:134140.Google Scholar
Teicher, H. B., Madsen, K. H., Jensen, J. E., and Streibig, J. C. 2002. Rapid assessment of glyphosate translocation by the fluorescence induction curve. in Proceeding of the 10th IUPAC International Congress on the Chemistry of Crop Protection; Basel, Switzerland. Volume 1176. P. 179.Google Scholar
Theodoulou, F. L., Clark, I. M., He, X. L., Pallett, K. E., Cole, D. J., and Hallahan, D. L. 2003. Co-induction of glutathione-S-transferases and multidrug resistance associated protein by xenobiotics in wheat. Pest Manag. Sci 59:202214.CrossRefGoogle ScholarPubMed
Walti, M., Roulin, S., and Feller, U. 2002. Effects of pH, light and temperature on (1→3,1→4)-β-glucanase stability in wheat leaves. Plant Physiol. Biochem 40:363371.CrossRefGoogle Scholar
Zagnitko, O., Jelenska, J., Tevzadze, G., Haselkorn, R., and Gornicki, P. 2001. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc. Natl. Acad. Sci. USA 98:66176622.Google Scholar
Zuther, E., Johnson, J. J., Haselkorn, R., McLeod, R., and Gornicki, P. 1999. Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA 96:1338713392.CrossRefGoogle ScholarPubMed