Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T08:51:10.966Z Has data issue: false hasContentIssue false

Effect of Simazine on Photosynthesis and Growth of Filamentous Algae

Published online by Cambridge University Press:  12 June 2017

Steven W. O'Neal
Affiliation:
Dep. Bot. and Plant Pathol., Purdue Univ., W. Lafayette, IN 47907
Carole A. Lembi
Affiliation:
Dep. Bot. and Plant Pathol., Purdue Univ., W. Lafayette, IN 47907

Abstract

Simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] inhibited photosynthesis 50% at concentrations of 1.1 μM for Spirogyra jurgensii (Kutz), 3.0 μM for Pithophora oedogonia (Mont.) Wittr., and 3.8 μM for Cladophora glomerata (L.) Kutz. Photosynthesis of Ankistrodesmus braunii (Brun.), a nonfilamentous species, was inhibited the same amount by 4.7 μM simazine. The filamentous algal species had significant reductions in growth but no other phytotoxic symptoms when exposed to 5 μM simazine at light intensities of 100 μE·m–2·s–1 and below. Algicidal effects did occur at a light intensity of 400 μE·m–2·s–1 and were most severe in Spirogyra. The relationship between light intensity and simazine toxicity indicates algicidal effectiveness on these filamentous algae will be limited in habitats where light is reduced by turbidity, depth, or self-shading.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ashton, F. M. 1965. Relationship between light and toxicity symptoms caused by atrazine and monuron. Weeds 13:164168.Google Scholar
2. Ashton, F. M., Bisalputra, T., and Risley, E. B. 1966. Effect of atrazine on Chlorella vulgaris . Am. J. Bot. 53:217219.CrossRefGoogle Scholar
3. Ashton, F. M. and Crafts, A. S. 1981. Mode of action of herbicides. 2nd ed. John Wiley and Sons, New York. 525.Google Scholar
4. Arvik, J. H., Hyzak, D. L., and Zimdahl, R. L. 1973. Effect of metribuzin and two analogs on five species of algae. Weed Sci. 21:173175.Google Scholar
5. Bishop, N. I. 1962. Inhibition of the oxygen-evolving system of photosynthesis of amino-triazines. Biochim. Biophys. Acta 57:186189.Google Scholar
6. Butler, G. L., Deason, T. R., and O'Kelley, J. C. 1975. The effect of atrazine, 2,4-D, methoxychlor, carbaryl and diazinon on the growth of planktonic algae. Br. Phycol. J. 10:371376.CrossRefGoogle Scholar
7. Dodge, A. D. 1982. The role of light and oxygen in the action of photosynthetic inhibitor herbicides. Pages 5777 in Moreland, D. E., St. John, J. B., and Hess, F. D., eds. Biochemical responses induced by herbicides. A.C.S. Symposium Series 181. Amer. Chem. Soc., Washington, DC.Google Scholar
8. Ellis, J., Higgins, E., Pruss, S., and Norton, J. 1976. Management of aquatic vegetation with simazine. Proc. Northeast. Weed Sci. Soc. 30:8691.Google Scholar
9. Fowler, M. C. 1977. Laboratory trials of a new triazine herbicide (DPX 3674) on various aquatic species of macrophytes and algae. Weed Res. 17:191195.Google Scholar
10. Gerloff, G. C. and Fitzgerald, G. P. 1976. The nutrition of Great Lakes Cladophora. U.S. Env. Prot. Agen. EPA-600/3-76-044., Duluth Minn., 111.Google Scholar
11. Gordon, D. M., Birch, P. B., and McComb, A. J. 1980. The effect of light, temperature and salinity on photosynthetic rates of an estuarine Cladophora . Bot. Mar. 23:749755.Google Scholar
12. Mehta, R. S. and Hawxby, K. W. 1979. Effects of simazine on the blue-green alga Anacystis nidulans . Bull. Environ. Contam. Toxicol. 23:319326.Google Scholar
13. Moreland, D. E. 1980. Mechanisms of action of herbicides. Annu. Rev. Plant Physiol. 31:597638.Google Scholar
14. Pearlmutter, N. L. and Lembi, C. A. 1980. Structure and composition of Pithophora oedogonia (Chlorophyta) cell walls. J. Phycol. 16:602616.Google Scholar
15. Ramirez-Torres, A. M. and O'Flaherty, L. M. 1976. Influence of pesticides on Chlorella, Chlorococcum, Stigeoclonium (Chlorophyceae), Tribonema, Vaucheria (Xanthophyceae) and Oscillatoria (Cyanophyceae). Phycologia 15:2536.Google Scholar
16. Robson, T. O., Fowler, M. C., and Barrett, P.R.F. 1976. Effect of some herbicides on freshwater algae. Pestic. Sci. 7:391402.Google Scholar
17. Smith, G. M. 1950. The Fresh-Water Algae of the United States. 2nd ed. McGraw-Hill Book Co., New York. 719.Google Scholar
18. Voskresenskaya, N. P. 1979. “Effect of light quality on carbon metabolism”. Pages 174180 in Gibbs, M. and Lotzko, E., eds. Encyclopedia of Plant Physiology. Vol. 6. Photosynthetic carbon metabolism and related processes. Springer-Verlag, New York.Google Scholar
19. Wetzel, R. G. 1975. Limnology. W. B. Saunders Co., Philadelphia. 743.Google Scholar
20. Wetzel, R. G. and Westlake, D. F. 1969. Periphyton. Pages 3340 in Vollenweider, R. A., ed. A manual on methods for measuring primary production in aquatic environments. IBP Handbook No. 12. F. A. Davis Co., Philadelphia.Google Scholar
21. Zweig, G., Tamas, I., and Greenberg, E. 1963. The effect of photosynthesis inhibitors on oxygen evolution and fluorescence of illuminated Chlorella . Biochim. Biophys. Acta 66:196205.Google Scholar