Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T07:47:22.082Z Has data issue: false hasContentIssue false

Evaluation of Indigenous Fungal Pathogens from Horse Purslane (Trianthema portulacastrum) for Their Relative Virulence and Host Range Assessments to Select a Potential Mycoherbicidal Agent

Published online by Cambridge University Press:  20 January 2017

Puja Ray*
Affiliation:
Amrita Center for Nanomedicine and Molecular Medicine, AIMS, Ponekkara, Kochi, 41, Kerala, India
Lakshmi Sumitra Vijayachandran
Affiliation:
Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
*
Corresponding author's E-mail: puja.ray@gmail.com

Abstract

Periodic surveys were conducted to seek potential indigenous fungal agents for development as mycoherbicides against horse purslane, a major weed of agricultural fields in India. Pathogenic fungal species were isolated and identified from naturally infected horse purslane. The biocontrol potential of these pathogens for horse purslane was evaluated by studying their host range and virulence under growth chamber and greenhouse conditions. Three candidates, Alternaria alternata, Fusarium oxysporum, and Phoma herbarum, were identified as potential candidates for biological control of horse purslane. Preliminary host-range tests and pathogenicity studies, conducted using 45 crop and weed plants belonging to 18 families, demonstrated that P. herbarum provided effective weed control and was safe to most of the plant species tested. Further mycoherbicidal application of P. herbarum as plant spray under field condition caused mortality of horse purslane 60 d after application of the inoculums. Phoma herbarum is a good mycoherbicide candidate against horse purslane.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adamson, R. S. 1962. The South African species of Aizoaceae, 12: Sesuvium, Trianthema, Zaleya . J. S. Afr. Bot. 28:243253.Google Scholar
Aneja, K. R. and Kaushal, S. 1999. Occurrence of Gibbago trianthemae on horse purslane in India. J. Biol. Control. 12:157159.Google Scholar
Aneja, K. R., Khan, S. A., and Kaushal, S. 2000. Management of horse purslane (Trianthema portulacastrum L.) with Gibbago trianthemae Simmons in India. Pages 2733 in Spencer, N. R., ed. Proc. of the 10th Intl. Symp. on Biol. Control of Weeds. Bozeman, MT Montana State University.Google Scholar
Auld, B. A. and Morin, L. 1995. Constraints in the development of bioherbicides. Weed Technol. 9:638–52.Google Scholar
Babu, R. M., Sajeena, A., and Seetharaman, K. 2004. Paecilomyces varioti as bioherbicide on Trianthema portulacastrum (L.)—a new host record. J. Mycol. Plant Pathol. 34:142143.Google Scholar
Balyan, R. S. and Bhan, V. M. 1986. Emergence, growth and reproduction of horse purslane (Trianthema portulacastrum) as influenced by environmental conditions. Weed Sci. 34:516519.Google Scholar
Balyan, R. S. and Malik, R. K. 1989. Control of horse purslane (Trianthema portulacastrum) and barnyardgrass (Echinochloa crus-galli) in mung bean (Vigna radiata). Weed Sci. 37:695699.Google Scholar
Barnett, H. L. 1960. Illustrated genera of imperfect fungi. 2nd ed. Minneapolis, MN Burgess Publishing Company. 225 p.Google Scholar
Bohra, B., Vyas, B. N., Godrej, N. B., and Mistry, K. B. 2005. Evaluation of Alternaria alternata (Fr.) Keissler for biological control of Trianthema portulacastrum L. Indian Phytopathol. 58:184188.Google Scholar
Booth, C. 1977. Fusarium: Laboratory guide to the identification of major species. Kew, Surrey, U.K. Commonwealth Mycological Institute. 58 p.Google Scholar
Boyette, C. D. and Abbas, H. K. 2001. New bioherbicides whacks weeds. Vegetable Prod. & Marketing News. Pp. 910.Google Scholar
Boyette, C. D., Hoagland, R. E., and Abbas, H. K. 2007. Evaluation of the bioherbicide Myrothecium verrucaria for weed control in tomato (Lycopersicon esculentum). Biocontrol Sci. Technol. 17:171178.Google Scholar
Charudattan, R. 1986. Integrated control of water hyacinth (Eichhornia crassipes) with pathogen, insects and herbicides. Weed Sci. 34:2630.Google Scholar
Charudattan, R. 2005. Ecological, practical and political inputs into selection of weed targets: what makes a good biological control target? Biol. Control. 35:183196.Google Scholar
Charudattan, R. and Dinoor, A. 2000. Biological control of weeds using plant pathogens: accomplishments and limitations. Crop Prot. 19:691695.Google Scholar
Domsch, K. H., Gams, W., and Anderson, T. H. 2007. Compendium of Soil Fungi. 2nd ed. [Taxonomically revised by Walter Gams]. Eching, Germany IHW-Verlag. 672 p.Google Scholar
Duthie, J. F. 1960. Flora of the Upper Gangetic Plain. Delhi, India Periodical Experts. 500 p.Google Scholar
Ellis, M. B. 1971. Dermatiaceous hypomycetes. Kew, Surrey, U.K. Commonwealth Mycological Institute. 608 p.Google Scholar
Ellis, M. B. 1976. More dermatiaceous hypomycetes. Kew, Surrey, U.K. Commonwealth Mycological Institute. 507 p.Google Scholar
Gilman, J. C. 1959. A Manual of Soil Fungi. 2nd ed. Calcutta, India Oxford & IBH Publ. Co. 450 p.Google Scholar
Grichar, W. J. 1993. Horse purslane (Trianthema portulacastrum) control in peanut (Arachis hypogaea). Weed Technol. 7:570572.Google Scholar
Grichar, W. J. 2007. Horse purslane (Trianthema portulacastrum) smellmelon (Cucumis melo L.) and Palmer amaranth (Amaranthus palmeri S. Wats) in peanut with post emergence herbicides. Weed Technol. 21:688691.CrossRefGoogle Scholar
Grichar, W. J. 2008. Herbicide systems for control of horse purslane (Trianthema portulacastrum L.), smellmelon (Cucumis melo L.), and Palmer amaranth (Amaranthus palmeri S. Wats) in peanut. Peanut Sci. 35:3842.Google Scholar
Gu, Z., Ji, M., Zhang, Y., Wang, Y., and Wei, S. 2009. Herbicidal activity and weeds controlling spectrum of toxin from Phoma herbarum . J. Shenyang Agric. Univ. 40(4):431434.Google Scholar
Hazra, D., Das, T. K., and Yaduraju, N. T. 2011. Interference and economic threshold of horse purslane (Trianthema portulacastrum) in soybean cultivation in northern India. Weed Biol. Manag. 11:7282.Google Scholar
Holliday, P. 1993. A Dictionary of Plant Pathogens. New Delhi, India Cambridge University Press. 369 p.Google Scholar
Holm, L., Doll, J., Holm, E., Pancho, J., and Herberger, J. 1997. World Weeds: Natural Histories and Distribution. New York J. Wiley. 1129 p.Google Scholar
Jeffrey, C. 1960. Notes on tropical African Aizoaceae. Kew Bull. 14:235238.Google Scholar
Jeffrey, C. 1961. Aizoaceae (including Molluginaceae and Tetragoniaceae). Page 37 in Hubbard, O.B.E., and Milne-Redhead, E., eds. Flora of Tropical East Africa. London Crown Agents for Oversea Governments.Google Scholar
Johnson, E. A. 1946. An improved slide culture technique for the study and identification of pathogenic fungi. J. Bacteriol. 51:689694.CrossRefGoogle Scholar
Mamy, L., Gabrielle, B., and Barriuso, E. 2010. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops. Environ. Pollut. 158:31723178.Google Scholar
Marley, P. S. and Shebayan, J. A. Y. 2005. Field assessment of Fusarium oxysporum based mycoherbicide for control of Striga hermonthica in Nigeria. Biocontrol. 50:389399.CrossRefGoogle Scholar
Mitchell, J. K. 1988. Gibbago trianthemae, a recently described hyphomycete with bioherbicide potential for the control of horse purslane (Trianthema portulacastrum). Plant Dis. 72:354355.Google Scholar
Morin, L. 1996. Different countries, several potential bioherbicides, but always the same hurdles. Page 546 in Moran, V. C., and Hoffmann, J. H., eds. Proc. of 9th Intl. Symp. Biol. Control Weeds. Stellenbosch, South Africa University of Cape Town Press. 563 p.Google Scholar
Neumann Brebaum, S. and Boland, G. J. 1999. First report of Phoma herbarum and Phoma exigua as pathogens of dandelion in southern Ontario. Plant Dis. 83:200.Google Scholar
Panse, V. G. and Sukhatme, P. V. 1957. Statistical Methods for Agricultural Workers. New Delhi Indian Council of Agricultural Research. 361 p.Google Scholar
Ray, P. and Hill, M. P. 2012. Impact of feeding by Neochetina weevils on pathogenicity of fungi associated with waterhyacinth in South Africa. J. Aquat. Plant Manag. 50:7984.Google Scholar
Saeed, M., Marwat, K. B., Hassan, G., Khan, A., and Khan, I. A. 2010. Interference of horse purslane (Trianthema portulacastrum L.) with maize (Zea mays L.) at different densities. Pak. J. Bot. 42:173179.Google Scholar
Sethi, A. and Mohnot, K. 1988. Allelopathic influence of leaf extracts of Trianthema portulacastrum on germination and growth of moth bean, Vigna aconitifollus . J. Curr. Biosci. 5:6163.Google Scholar
Simmons, E. G. 1986. Gibbago, a new phaeodictyoconidial genus of hyphomycetes. Mycotaxon. 27:107111.Google Scholar
Sivanesan, A. 1987. Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Kew, Surrey, U.K. Commonwealth Mycological Institute Mycological Paper. 158 p.Google Scholar
Sutton, B. C. 1980. The Coelomycetes: Fungi Imperfecta with Pycnidia, Acervuli and Stromata. Kew, Surrey, U.K. Commonwealth Mycological Institute. 696 p.Google Scholar
TeBeest, D. O., Yang, X. B., and Cisar, C. R. 1992. The status of biological control of weeds with fungal pathogens. Annu. Rev. Phytopathol. 30:637–57.Google Scholar
Umarani, R. and Selvaraj, J. A. 1995. Studies on the growth and yield of carpet weed (Trianthema portulacastrum) as influenced by soybean (Glycine max (L.) Merrill). Indian J. Weed Sci. 27:209210.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:453459.Google Scholar
Vikrant, P., Verma, K. K., Rajak, R. C., and Pandey, A. K. 2006. Characterization of a phytotoxin from Phoma herbarum for management of Parthenium hysterophorus L. J. Phytopathol. 154:461468.Google Scholar
Watson, A. K. 1991. The classical approach with plant pathogens. Pages 323 in TeBeest, D. O., ed. Microbial Control of Weeds. New York Chapman and Hall.Google Scholar