Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T12:18:16.725Z Has data issue: false hasContentIssue false

Modeling the Emergence of Three Arable Bedstraw (Galium) Species

Published online by Cambridge University Press:  20 January 2017

Aritz Royo-Esnal*
Affiliation:
Departament d'Hortofruticultura, Botànica i Jardineria, ETSEA, Universitat de Lleida, Avda Rovira Roure 191, 25198, Lleida, Spain
Joel Torra
Affiliation:
Departament d'Hortofruticultura, Botànica i Jardineria, ETSEA, Universitat de Lleida, Avda Rovira Roure 191, 25198, Lleida, Spain
Josep Antoni Conesa
Affiliation:
Departament d'Hortofruticultura, Botànica i Jardineria, ETSEA, Universitat de Lleida, Avda Rovira Roure 191, 25198, Lleida, Spain
Frank Forcella
Affiliation:
North Central Soil Conservation Research Laboratory, USDA-ARS, Morris, MN 56267
Jordi Recasens
Affiliation:
Departament d'Hortofruticultura, Botànica i Jardineria, ETSEA, Universitat de Lleida, Avda Rovira Roure 191, 25198, Lleida, Spain
*
Corresponding author's E-mail: aritz@hbj.udl.cat

Abstract

Multiyear field data from Spain were used to model seedling emergence for three bedstraw species (Galium) that can coexist in winter cereal fields. The relationships between cumulative emergence and both growing degree days (GDD) and hydrothermal time (HTT) in soil were analyzed as sigmoid growth functions (Weibull). Iterations of base temperature and base water potential were used to optimize the HTT scale. All species were well described with Weibull functions. Both GDD and HTT models provided good descriptions of catchweed bedstraw emergence, as its seedlings have less dependence on soil water potential than false cleavers and threehorn bedstraw, which were described best with HTT. The HTT model for catchweed bedstraw was validated successfully with independent data from the United Kingdom. The models may be useful for predicting bedstraw emergence in semiarid Mediterranean regions and elsewhere.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aizpuru, I., Aseginolaza, C., Uribe-Echebarria, P. M., Urrutia, P., and Zorrakin, I. 2000. Claves ilustradas de la flora del País Vasco y territorios limítrofes. Servicio central de Publicaciones del Gobierno Vasco. Vitoria-Gasteiz, Spain. 831.Google Scholar
Aragro 2007. Tomahawk ¿Quieres un completo control de malas hierbas?. Technical guide: http://www.aragro.es/html/pdfs_home/tomahawk.pdf. Accessed: July 1, 2009.Google Scholar
Benvenuti, S. and Macchia, M. 1993. Calculation of threshold temperature for the development of various weeds. Agric. Medit. 123 (3):252256.Google Scholar
Bolòs, O., Vigo, J., Masalles, R. M., and Ninot, J. M. 1996. Rubiàcies. Flora dels Països Catalans. Barcelona Barcino. 1247.Google Scholar
Boyd, N. S. and Van Acker, R. C. 2003. The effects of depth and fluctuating soil moisture on the emergence of eight annual and six perennial plant species. Weed Sci. 51:725730.CrossRefGoogle Scholar
Carretero, J. L. 2004. Flora arvense española: las malas hierbas de los cultivos españoles. Phytoma España.Google Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006a. Factors affecting seed germination of threehorn bedstraw (Galium tricornutum) in Australia. Weed Sci. 54:471477.Google Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006b. Seed germination and seedling emergence of threehorn bedstraw (Galium tricornutum). Weed Sci. 54:867872.CrossRefGoogle Scholar
Cussans, J. W. and Ingle, S. 1999. The biology of autumn and spring emerging cleavers (Galium aparine) individuals. Proc. Brighton Crop Prot. Conf. Weeds. 123:231236.Google Scholar
Defelice, M. 2002. Catchweed bedstraw or cleavers, Galium aparine L.—a very “sticky” subject. Weed Technol. 16 (2):467472.CrossRefGoogle Scholar
DowAgroSciences 2009. Understanding of cleavers problem. Technical guide: http://www.dowagro.com/PublishedLiterature/dh_0178/0901b80380178807.pdf?filepath=/uk/pdfs/noreg/011-01004.pdfandfromPage=GetDoc. Accessed: March 26, 2009.Google Scholar
Ekeleme, F., Forcella, F., Archer, D. W., Okezie Akobundu, I., and Chikoye, D. 2005. Seedling emergence model for tropic ageratum (Ageratum conyzoides). Weed Sci. 53:5561.Google Scholar
Evans, C. E. and Etherington, J. R. 1990. The effect of soil water potential on seed germination of some British plants. New Phytol. 115:539548.CrossRefGoogle ScholarPubMed
Forcella, F. 1998. Real-time assesment of seed dormancy and seedling growth for weed management. Seed Sci. Res. 8:201209.CrossRefGoogle Scholar
Forcella, F., Benech Arnold, R. L., Sanchez, R., and Ghersa, C. M. 2000. Modelling seedling emergence. Field Crops Res. 67:123139.Google Scholar
Froud-Williams, R. J. F. 1985. The biology of cleavers (Galium aparine). Asp. App. Biol. 9:189195.Google Scholar
Gummerson, R. J. 1986. The effect of constant temperature and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37:729741.Google Scholar
Gupta, S. C. 1985. Predicting corn planting dates for moldboard and no tillage systems in the corn belt. Agron. J. 77:446455.Google Scholar
Hübner, R., Fykse, H., Hurle, K., and Klemsdal, S. S. 2003. Morphological differences, molecular characterization, and herbicide sensivity of catchweed bedstraw (Galium aparine) populations. Weed Sci. 51:214225.Google Scholar
Kimura, D. K. 1980. Likehood methods for the Vonbertalanffy growth curve. US Fish. Bull. 77:765776.Google Scholar
Kuc, A., Conesa, J. A., and Recasens, J. 2003. Identificación de semillas de malas hierbas en granos de trigo tras la cosecha. Congreso 2003 Sociedad Española de Malherbología. 123126.Google Scholar
Malik, N. and Vanden Born, W. H. 1988. The biology of Canadian weeds, Galium aparine L. and Galium spurium L. Can. J. Plant Sci. 68:481499.CrossRefGoogle Scholar
Martinson, K., Durgan, B., Forcella, F., Wiersma, J., Spokas, K., and Archer, D. 2007. An emergence model for wild oat (Avena fatua). Weed Sci. 55:584591.Google Scholar
Masuda, M. and Washitani, I. 1992. Differentiation of spring emerging and autumn emerging ecotypes in Galium spurium L. var. Echinospermum . Oecologia. 89:4246.Google Scholar
Mayer, D. G. and Butler, D. G. 1993. Statistical validation. Ecol. Model. 68:2132.Google Scholar
McGiffen, M., Spokas, K., Forcella, F., Archer, D., Poppe, S., and Figueroa, R. 2008. Emergence prediction of common groundsel (Senecio vulgaris). Weed Sci. 56:5865.Google Scholar
Mennan, H. and Ngouajio, M. 2006. Seasonal cycles in germination and seedling emergence of summer and winter populations of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber). Weed Sci. 54:114120.Google Scholar
METEOCAT-Meteorologic Service of Catalonia. Available at: http://www.meteo.cat/mediamb_xemec/servmet/marcs/marc_dades.html.Google Scholar
Moore, R. J. 1975. The Galium aparine complex in Canada. Can. J. Bot. 53:877893.Google Scholar
Norsworthy, J. K. and Oliveira, M. J. 2007. A model predicting common cocklebur (Xanthium strumarium) emergence in soybean. Weed Sci. 55:341345.CrossRefGoogle Scholar
Ortega-Olivenza, A. and Devesa, J. A. 2004. Sobre el tratamiento de Galium L. (Rubiaceae) en Flora Ibérica. Acta Bot. Malac. 29:241253.Google Scholar
Riba, F., Taberner, A., Cuadros, R., Massanes, J., and Sole, M. 1991. Observaciones sobre los efectos de la temperatura en el desarrollo fenològico de seis especies de malas hierbas infestantes de cereales de invierno, en sus primeros estadios de desarrollo. Actas del congreso 1991 Sociedad Española de Malherbología. 142145.Google Scholar
Roman, E. S., Murphy, S. D., and Swanton, C. D. 2000. Simulation of Chenopodium album seedling emergence. Weed Sci. 48:217224.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems 2008. SAS User's Guide: Statistics. Cary, NC Statistical Analysis Systems Institute. 956.Google Scholar
Schutte, B. J., Regnier, E. E., Harrison, S. K., Schmoll, J. T., Spokas, K., and Forcella, F. 2008. A hydrothermal emergence model for giant ragweed (Ambrosia trifida). Weed Sci. 56:555560.Google Scholar
Spokas, K. and Forcella, F. 2009. Software tools for weed seed germination modeling. Weed Sci. 57:216227.Google Scholar
Taylor, K. 1999. Biological flora of the British Isles no. 207. Galium aparine L. J. Ecol. Oxf. 87:713730.Google Scholar
Van der Weide, R. Y. 1992. Phenology of arable and hedgerow populations of Galium aparine L. in relation to climate and soil conditions. Weed Res. 32:249258.Google Scholar
Weibull, W. 1959. A statistical distribution function of wide applicability. J. Appl. Mech. 18:293297.Google Scholar
Wright, K. J. and Wilson, B. J. 1987. Variability on the growth of cleavers (Galium aparine) and their effect on wheat yield. Proc. Br. Crop Prot. Conf. 22:10511058.Google Scholar