Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T08:26:30.751Z Has data issue: false hasContentIssue false

Predicting invasive potential of smooth crotalaria (Crotalaria pallida) in Brazilian national parks based on African records

Published online by Cambridge University Press:  20 January 2017

Paulo Roberto Guimarães Jr.
Affiliation:
Integrative Ecology Group, Estación Biológica Doñana, CSIC, Apdo. 1056, E-41080 Sevilla, Spain, and Programa de Pós-Graduação em Ecologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970, Campinas, SP, Brazil
Sérgio Rodrigues Morbiolo
Affiliation:
Programa de Pós-Graduação em Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970, Campinas, SP, Brazil
Ricardo Scachetti-Pereira
Affiliation:
Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045
A. Townsend Peterson
Affiliation:
Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045

Abstract

Alien weed species rank among the most important threats to conservation of biodiversity, making understanding the extent to which protected natural areas are vulnerable to invasion by weeds pivotal in long-term maintenance and conservation of biodiversity. We investigated the potential geographic range of the invasive paleotropical weed, smooth crotalaria, in protected natural areas across Brazil. The ecological niche dimensions of smooth crotalaria in Africa (its putative original distribution) were modeled using a genetic algorithm. Models for the native range and their projections to South America showed good predictive ability when challenged with independent occurrence data. All Brazilian protected natural areas were predicted as highly vulnerable to invasion by this species. However, smooth crotalaria appears more likely to occur in open (savanna-like vegetation, such as cerrado and pantanal) and highly fragmented (Atlantic forest) areas than in extensive closed forests (Amazon). Management suggestions and research priorities are outlined based on these results.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. P., Laverde-Gómez, M., and Peterson, A. T. 2002a. Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob. Ecol. Biogeogr. Lett 11:131141.CrossRefGoogle Scholar
Anderson, R. P., Laverde-Gómez, M., and Peterson, A. T. 2002b. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 93:316.CrossRefGoogle Scholar
Anderson, R. P., Lew, D., and Peterson, A. T. 2003. Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecol. Model 162:211232.CrossRefGoogle Scholar
Baker, H. G. 1974. The evolution of weeds. Annu. Rev. Ecol. Syst 5:124.CrossRefGoogle Scholar
Bhatt, Y. D., Rawat, Y. S., and Singh, S. P. 1994. Changes in ecosystem functioning after replacement of forest by Lantana shrubland in Kumaun Himalaya. J. Veg. Sci 5:6770.CrossRefGoogle Scholar
Chapman, A. D., Muñoz, M. E. S., and Koch, I. 2005. Environmental information: placing biodiversity phenomena in an ecological and environmental context. Biodivers. Inf 2:2441.Google Scholar
D'Antonio, C. M. and Vitousek, P. M. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst 23:6387.CrossRefGoogle Scholar
de S. Dias, B. F 1992. Cerrados: uma caracterização. In: Pinto, M. N., ed. Alternativas de Desenvolvimento dos Cerrados: Manejo e Conservação o Dos Recursos Naturais Renováveis. Brasília, Brazil: Fundação Pró Natureza FUNATURA. [In Portuguese].Google Scholar
Diaz, G. J., Roldan, L. P., and Cortes, A. 2003. Intoxication of Crotalaria pallida seeds to growing broiler chicks. Vet. Hum. Toxicol 45:187189.Google ScholarPubMed
Fensham, R. J. 1996. Land clearance and conservation of inland dry rainforest in North Queensland, Australia. Biol. Conserv 75:289298.CrossRefGoogle Scholar
Fonseca, G. A. B. 1985. The vanishing Brazilian Atlantic forest. Biol. Conserv 34:1734.CrossRefGoogle Scholar
Graaff, J. L. 1986. Lantana camara, the plant and some methods for its control. S. Afr. For. J 136:2630.Google Scholar
Grinnell, J. 1917. Field tests of theories concerning distributional control. Am. Nat 51:115128.Google Scholar
Guimarães, P. R., Raimundo, R. L. G., Bottcher, C., Silva, R. R., and Trigo, J. R. 2006. Extrafloral nectaries as a deterrent mechanism against seed predators in the chemically defended weed Crotalaria pallida (Leguminosae). Aus.: Ecol. (in press).Google Scholar
Higgins, S. I., Richardson, D. M., Cowling, R. M., and Trinder-Smith, T. H. 1999. Predicting the landscape-scale distribution of alien plants and their threat to plant diversity. Conserv. Biol 13:303313.CrossRefGoogle Scholar
Holt, J. S. and Boose, A. B. 2002. Potential for spread of Abutilon theophrasti in California. Weed Sci 48:4352.Google Scholar
IPCC Intergovernmental Panel on Climate Change. 2001. Climate Data Archive. www.ipcc.ch.Google Scholar
Janzen, D. H. 1983. No park is an island—increase in interference from outside as park size decreases. Oikos 41:402410.Google Scholar
Kumar, S. and Rohatgi, N. 1999. The role of invasive weeds in changing floristic diversity. Ann. For 7:147150.Google Scholar
Leslie, A. J. and Spotila, J. R. 2001. Alien plant threatens Nile crocodile (Crocodylus niloticus) breeding in Lake St. Lucia, South Africa. Biol. Conserv 98:347355.CrossRefGoogle Scholar
Lodge, D. M. 1993. Biological invasions: lessons for ecology. Trends Ecol. Evol 8:133137.Google Scholar
Lorenzi, H. 2000. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, 3rd ed. Nova Odessa, Brasil: Plantarum.Google Scholar
McNaughton, S. J., Sala, O. E., and Oesterheld, M. 1993. Comparative ecology of African and South American arid to subhumid ecosystems. Pages 548567 in Goldblatt, P. ed. Biological Relationships Between Africa and South America. New Haven, CT: Yale University Press.CrossRefGoogle Scholar
Mauchamp, A., Aldaz, I., Ortiz, E., and Valdebenito, H. 1998. Threatened species, a re-evaluation of the status of eight endemic plants of the Galápagos. Biod. Cons 7:97101.Google Scholar
Muniappan, R., Denton, G. R. W., Brown, J. W., Lali, T. S., Prasad, U., and Singh, P. 1996. Effectiveness of the natural enemies of Lantana camara on Guam: a site and seasonal evaluation. Entomophaga 41:167182.Google Scholar
Ohdan, H. and Daimon, H. 1998. Evaluation of amount of nitrogen fixed in Crotalaria spp. and nitrogen turnover to the succeeding wheat. Jpn. J. Crop. Sci 67:193199.CrossRefGoogle Scholar
Ohdan, H., Daimon, H., and Mimoto, H. 1995. Evaluation of allelopathy in Crotalaria by using a seed pack growth pouch. Jpn. J. Crop. Sci 64:644649.Google Scholar
Oliveira, P. S. and Marquis, R. J. 2002. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press.Google Scholar
Peterson, A. T. 2001. Predicting species' geographic distributions based on ecological niche modeling. Condor 103:599605.Google Scholar
Peterson, A. T. and Cohoon, K. C. 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol. Model 117:159164.Google Scholar
Peterson, A. T., Egbert, S. L., Sanchez-Cordero, V., and Price, K. P. 2000. Geographic analysis of conservation priorities using distributional modeling and complementarity: endemic birds and mammals in Veracruz, Mexico. Biol. Conserv 93:8594.Google Scholar
Peterson, A. T., Ortega-Huerta, M. A., Bartley, J., Sanchez-Cordero, V., Soberón, J., Buddemeier, R. H., and Stockwell, D. R. B. 2002. Future projections for Mexican faunas under global climate change scenarios. Nature 416:626629.Google Scholar
Peterson, A. T., Papes, M., and Kluza, D. A. 2003a. Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci 51:863868.CrossRefGoogle Scholar
Peterson, A. T., Scachetti-Pereira, R. P., and Kluza, D. A. 2003b. Assessment of invasive potential of Homalodisca coagulata in western North America and South America. Biota Neotropica 3.Google Scholar
Peterson, A. T. and Vieglais, D. A. 2001. Predicting species invasions using ecological niche modeling. Bioscience 51:363371.CrossRefGoogle Scholar
Pimentel, D., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:5365.CrossRefGoogle Scholar
Polhill, R. M. 1982. Crotalaria in Africa and Madagascar. Rotterdam, The: Netherlands: Balkema.Google Scholar
Rand, T. A. and Louda, S. M. 2004. Exotic weed invasion increases the susceptibility of native plants attack by a biocontrol herbivore. Ecology 85:15481554.Google Scholar
Ratter, J. A. and Dargie, T. C. D. 1992. An analysis of the floristic composition of 26 cerrado areas in Brazil. Edinb. J. Bot 49:235250.Google Scholar
Rouw, A. 1991. The invasion of Chromolaena odorata (L.) King and Robinson (ex Eupatorium odoratum), and competition with the native flora, in a rain forest zone, south-west Cote d'Ivoire. J. Biogeogr 18:1323.Google Scholar
Russel, M. J. and Roberts, B. R. 1996. Effects of four low-intensity burns over 14 years on the floristics of a blackbutt (Eucalyptus pilularis) forest in southern Queensland. Aust. J. Bot 44:315329.Google Scholar
Sakai, A. K., Allendorf, F. W., and Holt, J. S. et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst 32:305332.CrossRefGoogle Scholar
Sala, O. E., Chapin, F. S. III, and Armesto, J. J. et al. 2000. Global Biodiversity Scenarios for the Year 2100. Science. 287.Google Scholar
Sampaio, E. V. S. B. 1995. Overview of the Brazilian Caatinga. Pages 3563 in Bullock, S. H., Mooney, H. A., and Medina, E. ed. Seasonally Dry Tropical Forest. Cambridge, U.K.: Cambridge University Press.Google Scholar
Stockwell, D. R. B. 1999. Genetic algorithms, II. Pages 123144 in Fielding, A. H. ed. Machine Learning Methods for Ecological Applications. Boston: Kluwer Academic.Google Scholar
Stockwell, D. R. B. and Noble, I. R. 1992. Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math. Comput. Simul 33:385390.CrossRefGoogle Scholar
Stockwell, D. R. B. and Peters, D. P. 1999. The GARP modeling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Syst 13:143158.Google Scholar
Stockwell, D. R. B. and Peterson, A. T. 2002. Effects of sample size on accuracy of species distribution models. Ecol. Model 148:113.Google Scholar
The Nature Conservancy and Ecotrópica Foundation. 1999. Protecting the Pantanal Region. Matto Grosso and Matto Grosso do Sul, Brazil. www.tnc.org/infield/intprograms/LATIN-AM/BRAZIL/pantan.html.Google Scholar
[USDA] U.S. Department of Agriculture. 2004. Status of scientific evidence on risks associated with the introduction into the continental United States of Phakopsora pachyrhizi with imported soybean grain, seed, and meal. Riverdale, MD: Animal and Plant Health Inspection Service, Plant Protection, and Quarantine.Google Scholar
[USGS] U.S. Geological Survey. 2001. HYDRO-1k Elevation Derivative Database. www.edcdaac.usgs.gov/gtopo30/hydro/.Google Scholar
[USOTA] U.S. Office of Technology Assessment. 1993. Harmful Non-Indigenous Species in the United States. Washington, D.C.: Office of Technology Assessment.Google Scholar
Viana, V. M., Tabanez, A. A. J., and Batista, J. L. F. 1997. Dynamics and restoration of forest fragments in the Brazilian Atlantic moist forest. Pages 351365 in Laurance, W. F. and Bierregaard, R. O. Jr. ed. Tropical Forest Remnants: Ecology, Management, and Conservation of Fragmented Communities, Chicago: University of Chicago Press.Google Scholar
Vieira, C. M. and Pessoa, S. V. A. 2001. Estrutura e composição florística do estrato herbáceo subarbustivo de um pasto abandonado na Reserva Biológica de Poço das Antas, Município de Silva Jardim, RJ. Rodriguésia 52:1730. [In Portuguese].Google Scholar
Wang, K. H., Mcsorley, R., Marshall, A. J., and Gallaher, R. N. 2004. Nematode community changes associated with decomposition of Crotalaria juncea amendment in litterbags. Appl. Soil. Ecol 27:3145.Google Scholar
Zalba, S. M., Sonaglioni, M. I., and Belenguer, C. J. 2000. Using a habitat model to assess the risk of invasion by an exotic plant. Biol. Conserv 93:203208.Google Scholar