Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T13:43:27.776Z Has data issue: false hasContentIssue false

Spectrophotometric and Spectrofluorometric Methods in Weed Science

Published online by Cambridge University Press:  12 June 2017

Stephen O. Duke
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 350, Stoneville, MS 38776
Mary V. Duke
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 350, Stoneville, MS 38776
Timothy D. Sherman
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 350, Stoneville, MS 38776
Ujjana B. Nandihalli
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 350, Stoneville, MS 38776

Abstract

The utility, advantages, and disadvantages of several spectrofluorometric and in vivo spectrophotometric methods in plant science are reviewed, with emphasis on their use in weed science. Examples of the use of in vivo, dual-wavelength spectrophotometry to probe the effects of herbicides on cytochrome f oxidation/reduction, the P515 chromatic shift, phytochrome synthesis, and other processes are discussed. Use of in vivo spectrophotometry to examine effects of herbicides on phytylation of chlorophyllide, protochlorophyllide photoconversion, porphyrin accumulation, and other processes that result in spectral changes is discussed and examples are provided. Spectrofluorometric methods for pigment identification and quantification and for enzyme assays are illustrated with examples. Spectrofluorometric methods used in conjunction with high-pressure liquid chromatography (HPLC) and thin-layer chromatography (TLC) are discussed.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anion, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris . Plant Physiol. 24:115.Google Scholar
2. Bazzaz, M. B. and Rebeiz, C. A. 1979. Chloroplast culture-V. Spectrofluorometric determination of chlorophyll(ide) a and b and pheophytin (or pheophorbide) a and b in unsegregated pigment mixtures. Photochem. Photobiol. 30:709721.CrossRefGoogle Scholar
3. Becerril, J. M. and Duke, S. O. 1989. Acifluorfen effects on intermediates of chlorophyll synthesis in green cucumber cotyledon tissues. Pestic. Biochem. Physiol. 35:119126.Google Scholar
4. Buschmann, C., Grumbach, K. H., and Bach, T. J. 1980. Herbicides which inhibit photosystem II or produce chlorosis and their effect on production and transformation of pigments in etiolated radish seedlings (Raphanus sativus). Physiol. Plant. 49:455458.CrossRefGoogle Scholar
5. Duke, S. O., Becerril, J. M., Matsumoto, H., and Sherman, T. D. 1991. Photosensitizing porphyrins as herbicides. Am. Chem. Soc. Symp. Ser. 449:371386.Google Scholar
6. Duke, S. O. and Kenyon, W. H. 1986. Effects of dimethazone (FMC 57020) on chloroplast development II. Pigment synthesis and photosynthetic function in cowpea (Vigna unguiculata L.) primary leaves. Pestic. Biochem. Physiol. 25:1118.Google Scholar
7. Duke, S. O., Kenyon, W. H., and Paul, R. N. 1985. FMC 57020 effects on chloroplast development in pitted morningglory (Ipomoea lacunosa) cotyledons. Weed Sci. 33:786794.CrossRefGoogle Scholar
8. Duke, S. O. and Lane, A. D. 1984. Phytochrome control of leaf expansion and phytochrome accumulation in norflurazon and tentoxin-treated mung bean leaves. Physiol. Plant. 60:341346.Google Scholar
9. Duke, S. O., Lydon, J., and Paul, R. N. 1989. Oxadiazon activity is similar to that of p-nitro-diphenyl ether herbicides. Weed Sci. 37:152160.Google Scholar
10. Duke, S. O., Naylor, A. W., and Wickliff, J. L. 1977. Phytochrome control of longitudinal growth and phytochrome synthesis in maize seedlings. Physiol. Plant. 40:5968.CrossRefGoogle Scholar
11. Duke, S. O., Netzley, D. H., and McClure, J. W. 1981. Tissue localization of phytochrome in dark-grown barley leaves. Phytochemistry 20:23272328.CrossRefGoogle Scholar
12. Duke, S. O. and Paul, R. N. 1986. Effects of dimethazone (FMC 57020) on chloroplast development I. Ultrastructural effects in cowpea (Vigna unguiculata L.) primary leaves. Pestic. Biochem. Physiol. 25:110.Google Scholar
13. Duke, S. O. and Vaughn, K. C. 1987. Tentoxin effects on variable fluorescence and P515 electrochromic shifts in sensitive and insensitive plants. Plant Physiol. 83S: Abstr. 624. (Abstract).Google Scholar
14. Duke, S. O., Wickliff, J. L., Vaughn, K. C., and Paul, R. N. 1982. Tentoxin does not cause chlorosis in greening mung bean leaves by inhibiting photophosphorylation. Physiol. Plant. 56:387398.CrossRefGoogle Scholar
15. Duke, S. O. and Williams, R. D. 1977. Phytochrome distribution in johnsongrass rhizomes. Weed Sci. 25:229232.Google Scholar
16. Hiscox, J. D. and Israelstam, G. F. 1979. A method for the extraction of chlorophyll from leaf tissues without maceration. Can. J. Bot. 57:13321334.Google Scholar
17. Jacobs, J. M., Jacobs, N. J., Borotz, S. E., and Guerinot, M. L. 1990. Effects of the photobleaching herbicide, acifluorfen methyl, on protoporphyrinogen oxidation in barley organelles, soybean root mitochondria, soybean root nodules and bacteria. Arch. Biochem. Biophys. 280:369375.CrossRefGoogle ScholarPubMed
18. Kenyon, W. H., Duke, S. O., and Vaughn, K. C. 1985. Sequence of herbicidal effects of acifluorfen on ultrastructure and physiology of cucumber cotyledon discs. Pestic. Biochem. Physiol. 24:240250.CrossRefGoogle Scholar
19. Lehnen, L. P., Sherman, T. D., Becerril, J. M., and Duke, S. O. 1990. Tissue and cell localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic. Biochem. Physiol. 37:239248.CrossRefGoogle Scholar
20. Lydon, J. and Duke, S. O. 1988. Porphyrin synthesis is required for photobleaching activity of the p-nitrosubstituted diphenyl ether herbicides. Pestic. Biochem. Physiol. 31:7483.CrossRefGoogle Scholar
21. Nandihalli, U. B., Liebl, R. A., and Rebeiz, C. A. 1991. Photodynamic herbicides VIII. Mandatory requirement of light for the induction of protoporphyrin DC accumulation in acifluorfen-treated cucumber. Pestic. Sci. 31:923.CrossRefGoogle Scholar
22. Ooms, J.J.J., Vredenberg, W. J., and Buurmeijer, W. F. 1989. Evidence for an electrogenic and non-electrogenic component in the slow phase of the P515 response in chloroplasts. Photosynth. Res. 20:119128.Google Scholar
23. Rebeiz, C. A., Montazer-Zouhoor, A., Mayasich, J. M., Tripathy, B. C., Wu, S.-M., and Rebeiz, C. C. 1988. Phytodynamic herbicides. Recent developments and molecular basis of selectivity. CRC Crit. Rev. Plant Sci. 6:385436.Google Scholar
24. Ruble, W. and Wild, A. 1979. Measurements of cytochrome f and P-700 in intact leaves of Sinapis alba grown under high light and low light conditions. Planta 146:377385.Google Scholar
25. Scalla, R., Matringe, M., Camadro, J. -M., and Labbe, P. 1990. Recent advances in the mode of action of diphenyl ethers and related herbicides. Z. Naturforsch. 45c:503511.Google Scholar
26. Shibata, K. 1957. Spectroscopic studies on chlorophyll formation in intact leaves. J. Biochem. 44:147173.CrossRefGoogle Scholar
27. Steele, J. A., Uchytil, T. F., Durbin, R. D., Bhatnager, P., and Rich, D. H. 1976. Chloroplast coupling factor 1: A species-specific target for tentoxin. Proc. Nat. Acad. Sci. U.S.A. 73:22452248.Google Scholar
28. Tripathy, B. C. and Rebeiz, C. A. 1985. Chloroplast biogenesis: quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry. Anal. Biochem. 149:4361.Google Scholar
29. Varsano, R., Matringe, M., Magnin, N., Mornet, R., and Scalla, R. 1990. Competitive interaction of three peroxidizing herbicides with the binding of [3H]acifluorfen to corn etioplast membranes. FEBS Lett. 271:106108.Google Scholar
30. Vaughn, K. C. and Duke, S. O. 1983. In situ localization of the sites of paraquat action. Plant Cell Environ. 6:1320.Google Scholar
31. Vredenberg, W. J. 1981. P515: a monitor of photosynthetic energization in chloroplast membranes. Physiol. Plant. 53:598602.Google Scholar
32. Wickliff, J. L., Duke, S. O., and Vaughn, K. C. 1982. Involvement of photobleaching and inhibition of protochlorophyll(ide) accumulation in tentoxin effects on greening mung bean seedlings. Physiol. Plant. 56:399406.Google Scholar
33. Wu, S. M., Mayasich, J. M., and Rebeiz, C. A. 1989. Chloroplast biogenesis: quantitative determination of monvinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry. Anal. Biochem. 178:294300.Google Scholar