Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T11:11:03.289Z Has data issue: false hasContentIssue false

Glyphosate and Multiple Herbicide Resistance in Common Waterhemp (Amaranthus rudis) Populations from Missouri

Published online by Cambridge University Press:  20 January 2017

Travis R. Legleiter
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
*
Corresponding author's E-mail: bradleyke@missouri.edu

Abstract

Field and greenhouse experiments were conducted to determine the level of glyphosate resistance in common waterhemp populations from Platte County (MO1) and Holt County, Missouri (MO2), and to determine the level and distribution of resistance to glyphosate, acetolactate synthase (ALS)–inhibiting herbicides, and protoporophyrinogen oxidase (PPO)–inhibiting herbicides across the MO1 site. Results from greenhouse experiments revealed that the MO1 and MO2 waterhemp populations were 19 and 9 times more resistant to glyphosate, respectively, than a susceptible waterhemp population. In field experiments, greater than 54% of waterhemp at the MO1 site survived 1.7 kg glyphosate ae ha−1 (twice the labeled rate) 6 wk after treatment. Tank-mix combinations of ALS- and PPO-inhibiting herbicides with glyphosate also failed to provide complete control of the waterhemp population at the MO1 site. Collection and screening of seed from individual female waterhemp accessions revealed multiple resistance to glyphosate, ALS-, and PPO-inhibiting herbicides across the MO1 site. All 14 waterhemp accessions collected across the MO1 site exhibited greater than 65% survival to 2× rates of glyphosate and thifensulfuron, and these accessions were spread across a 5-km2 (503-ha) area. Four waterhemp accessions collected across a 0.9-km2 (87-ha) area also exhibited 26 to 38% survival to 2× rates of lactofen. The results from these experiments provide evidence and confirmation of the first glyphosate-resistant waterhemp population in the United States and reveal that multiple resistance to glyphosate, ALS-, and PPO-inhibiting herbicides can occur in waterhemp.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2000. Butyrac 200 herbicide product label. Ankeny, IA Albaugh, Inc. 3.Google Scholar
Anonymous 2007. Roundup Weathermax herbicide product label. Monsanto Company Publication No. 63003F4-40. St. Louis, MO Monsanto Company. 20.Google Scholar
Buhler, D. D. and Hartzler, R. G. 2001. Emergence and persistence of seed of velvetleaf, common waterhemp, woolly cupgrass, and giant foxtail. Weed Sci. 49:230235.CrossRefGoogle Scholar
Culpepper, A. S., Gimenez, A. E., York, A. C., Batts, R. B., and Wilcut, J. W. 2001. Morningglory (Ipomoea spp.) and large crabgrass (Digitaria sanguinalis) control with glyphosate and 2, 4-DB mixtures in glyphosate-resistant soybean (Glycine max). Weed Technol. 15:5661.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci. 49:598606.Google Scholar
Hager, A. and Sprague, C. 2002. Weeds on the horizon. in. The Bulletin, Issue no. 6. Champaign, IL University of Illinois.Google Scholar
Hager, A., Wax, L., and McGlamery, M. 1997. Waterhemp-Biology of a troublesome species. in. The Bulletin, Issue no. 4. Champaign, IL University of Illinois. 4 p. 4.Google Scholar
Hager, A. G., Wax, L. M., Stoller, E. W., and Bollero, G. A. 2002. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50:607610.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578584.Google Scholar
Heap, I. 2007. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed December 6, 2007.Google Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.CrossRefGoogle Scholar
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. F. 2004. Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Technol. 18:820825.Google Scholar
Ng, C. H., Ratnam, W., Surif, S., and Ismail, B. S. 2004. Inheritance of glyphosate resistance in goosegrass (Eleucine indica). Weed Sci. 52:564570.Google Scholar
Nordby, D., Hartzler, R. G., and Bradley, K. W. 2007. Biology and management of waterhemp. West Lafayette, IN Purdue Extension. Glyphosate, Weeds, and Crop Series Publication GWC-13. 12.Google Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.Google Scholar
Perez-Jones, A., Park, K. W., Colquhoun, J., Mallory-Smith, C., and Shaner, D. 2005. Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Sci. 53:775779.Google Scholar
Pline-Srnic, W. 2006. Physiological mechanisms of glyphosate resistance. Weed Technol. 20:290300.CrossRefGoogle Scholar
Pollard, J. M., Sellers, B. A., and Smeda, R. J. 2004. Differential response of common ragweed to glyphosate. Proc. N. Cent. Weed Sci. Soc. 59:27.Google Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol. 20:282289.Google Scholar
R Development Core Team 2006. R: A Language and Environment for Statistical Computing. http://www.r-project.org. Accessed March 20, 2008.Google Scholar
Ruiter, H. D. and Meinen, E. 1998. Influence of water stress and surfactant on the efficacy, absorption, and translocation of glyphosate. Weed Sci. 46:289296.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporophyrinogen oxidase–inhibiting herbicides. Weed Sci. 51:145150.CrossRefGoogle Scholar
Simarmata, M., Bughrara, S., and Penner, D. 2005. Inheritance of glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 53:615619.CrossRefGoogle Scholar
Smeda, R. J. and Schuster, C. L. 2002. Waterhemp resistance to glyphosate: fact or fiction. Proc. N Cent. Weed Sci. Soc. 57:209.Google Scholar
Steckel, L. E., Sprague, C. L., Stoller, E. W., Wax, L. M., and Simmons, F. W. 2007. Tillage, cropping system, and soil depth effects on common waterhemp (Amaranthus rudis) seed-bank persistence. Weed Sci. 55:235239.Google Scholar
Trucco, F., Jeschke, M. R., Rayburn, A. L., and Tranel, P. J. 2005. Promiscuity in weedy amaranths: high frequency of female tall waterhemp (Amaranthus tuberculatus) × smooth pigweed (A. hybridus) hybridization under field conditions. Weed Sci. 53:4654.Google Scholar
[USDA] U.S. Department of Agriculture 2008. National Agriculture Statistics Service. Agriculture Chemical Use Database: http://www.pestmanagement.info/nass/app_useage.cfm. Accessed: March 6, 2008.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed in Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
Wakelin, A. M. and Preston, C. 2006. Inheritance of glyphosate resistance in several populations of rigid ryegrass (Lolium rigidum) from Australia. Weed Sci. 54:212219.Google Scholar
Webster, T. M. 2005. Weed survey—southern states. Proc. S. Weed Sci. 58:291306.Google Scholar
Westwood, J. H. and Weller, S. C. 1997. Cellular mechanisms influence differential glyphosate sensitivity in field bindweed (Convolvulus arvensis) biotypes. Weed Sci. 42:211.Google Scholar
Wetzel, D. K., Horak, M. J., Skinner, D. Z., and Kulakow, P. A. 1999. Transferal of herbicide resistance traits from Amaranthus palmeri to Amaranthus tuberculatus . Weed Sci. 47:538543.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.Google Scholar
Zelaya, I. A. and Owen, M. D. K. 2005. Differential responses of Amaranthus tuberculatus (Moq ex DC) JD Sauer to glyphosate. Pest Manag. Sci. 61:936950.Google Scholar
Zelaya, I. A., Owen, M. D. K., and VanGessel, M. J. 2004. Inheritance of evolved glyphosate resistance in Conyza canadensis (L) Cronq. Theor App Genet. 110:5870.Google Scholar